

Vorlesung: Teilchenphysik I (Particle Physics I)

Detector systems

Günter Quast

Fakultät für Physik Institut für Experimentelle Kernphysik

WS 20/21

- 1. History
- 2. Basics principles
- 3. Detectors and Accelerators
 - 1. Interaction of particles with matter
 - 2. Simulation of particle interactions with Monte Carlo
 - 3. Detector Systems
 - 4. Accelerators

Introduction: Detector Systems

Combination of detector components needed

- to identify particles
- and precisely measure their momenta and / or energies
- vertex- and tracking detectors
- strong magnetic field for momentum measurement
- electromagnetic calorimeters
- hadron calorimeters
- myon detectors
- possibly spcial systems for particle identification

Identification and **precise measurement** of all (sufficiently) stable partilces: e[±], γ , p, n, μ^{\pm} , π^{\pm} , K^{0,±}, Λ

Introduction: Detector Systems (2)

- Detector system design is driven by research goal and experimental environment and constraints
- Examples of experiments with particle beams
 - Multipurpose collider experiments, e. g. ATLAS and CMS at the LHC
 - Asymmetric collider experiments, e. g. LHCb, experiments at B factories, electron – proton collider HERA
 - Fixed-target experiments, e. g. neutrino experiments, early experiments
- Examples of experiments without accelerators
 - Multipurpose experiments in neutrino physics
 - Specialised experiments, e. g. to measure neutrino mass, search for dark matter

More details than can be given here: Spezialvorlesung Detektoren

Principle of Particle Detection

relies on principles described in last lecture:

interaction of particles with matter leads to

- ionization \rightarrow
 - \rightarrow free charges in material
- photons (near visible spectrum) \rightarrow light

Detection principle:

collect charge and/or light and transform to electrical signal

basic measured quantity: "mV in detector cell"

After **digitization** and **data collection** from all detector cells:

 \rightarrow data structure consisting of cell idenitifiers and measured signal heights

Data stucture is processed by complex software stacks to produce:

- \rightarrow graphical displays: data visualisation
- → reconstructed physics objects (tracks,electrons, myons, photons, hadrons, jets ...)

These high-level physics objects form the basis of the subsequent data analysis

Fixed-Target and Collider Layout

H. Evans, copyright unknown

fixed target	collider
1 particle beam hits fixed target	2 particle beams collide
collision products in forward direction	collision products in all directions
"forward spectrometer" detector	cylindersymmetric "4 π " detector

Particle detection and identification

Concrete example: the CMS detector

Karlsruher Institut für Technologie

Multipurpose experiment

Funktionsprinzip eines Detektors: CMS

Quelle: Dissertation Joram Berger, Karlsruhe, Juli 2014

concrete example 2: the ATLAS Detector

same goals as CMS with (slightly) different approach:

- solenoid surrounding tracker
- toroidal magnet systems for myon measurements

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Parameter	ATLAS	CMS	
Total weight (tons)	7000	12,500	ATLAS vs. CMS:
Overall diameter (m)	22	15	twice the size
Overall length (m)	46	20	half the weight
Magnetic field for tracking (T)	2	4	Different B field
Solid angle for precision measurements $(\Delta \phi \times \Delta \eta)$	$2\pi \times 5.0$	$2\pi \times 5.0$	Same coverage
Solid angle for energy measurements $(\Delta \phi \times \Delta \eta)$	$2\pi \times 9.6$	$2\pi imes 9.6$	tracker & calerimetry
Total cost (million Swiss francs)	550	550	i acher à calorimetry,
			same cost

TABLE 2	Main design	parameters	of the	ATLAS	and	CMS	detectors
---------	-------------	------------	--------	-------	-----	-----	-----------

Annu. Rev. Nucl. Part. Sci. 56 (2006) 375

LHCb: optimized for B physics

Int. J. Mod. Phys. A30 (2015) 07, 1530022

precision measuremnts in forward direction

ALICE: optimized for high-multiplicity events

exotic states of matter and quark-gluon plasma

Event reconstruction

Optimal combination of different information needed:

- momentum measurement in tracking system, energy in calorimeters $\Delta p_T/p_T \propto p_T$ $\Delta E/E \propto 1/\sqrt{E}$
- for muos: combine track parameters from central detector and from myon system
- recognise converted photons, use tracks for better direction measurement
- assign (possibly) all tracks to clusters of energy deposits in calorimeters (reconstruction of "Particle Flow")
- particle detection from range, shower parameters, dE/dx, secondary vertices, ... for known particle types (=mass) momentum and energy are related: $E^2 = p^2 + m^2$
- instable particles are reconstructed from stable decay products (invariant relativistic mass)
- combine all particles to Jets
- detect non-interacting particles (neutrinos, particles from "new physics") via "missing transvers momentum" or "missing transverse energy"

$$\vec{p}_{Tmiss} = -\sum_{i} \vec{p}_{Ti}$$

This only works if interaction point is hermetically surrounded by detector components !

Selected detector components

Tracking detector

cern.ch

Purpose: registration of all energy deposits from charged particles, precise determination of their position, possibly measure dE/dx

Exasmples of Tracking Detectors

Gaseous detectors

- Prototype: Geiger counter
- Various types, e.g. multi-wire proportional chamber, drift chamber, time projection chamber
- Semiconductor detectors
 - Examples: silicon strips and pixel detectors (cf. lab exercises)
 - Further application e.g. precise energy measurement with germanium detectors
- Performance characteristics of tracking detectors
 - Single-hit position resolution
 - Momentum resolution

Track and vertex reconstrucion

- Measurement of particle track: tracking detector with *several sensitive layers*
- Electric signal in each layer: hit
- Track reconstruction ('tracking')
 - Track finding (pattern recognition): do hits belong to same helix?
 - Track fitting (parameter estimation): which helix parameters match the data best?
- Vertex fit: do tracks originate from same origin ('vertex')?

G. Mittag

Track fitting: minimise				
$\chi^2 = \sum_{\text{hit}} \frac{(x_i - f_i(\mathbf{q}))^2}{\sigma_i^2}$				
x_i : measured hit position				
$f_i(\mathbf{q})$: track model				
σ_i : measurement uncertainty				

Gaseous Detectors: principle

Important basic example: proportional counter

- Traversing charged particle ionises inert gas
- High voltage between anode wire and cylinder: drift of light electrons and heavy ions to electrodes (charge separation)
- Electric field large close to anode wire: charge amplification (typical factor 10 · 10⁵) in Townsend avalanche

- Design: each original ionisation event produces only one avalanche \rightarrow output proportional to energy of incident particle
- Ions emit UV photons when recombining → further ionisation limiting proportionality: absorbed by *quench gas*, e.g. CO₂

Gaseous Detectors: amplification

Voltage applied - linear scale

wikimedia.org

Multi-wire proportional chamber

Gorges Charpak 1968, Nobel Prize 1992

- Many anode wires in parallel, operated in proportional region
 - Planar arrangement of proportional counters without separating walls
 - Typical dimensions: $O(100 \,\mu\text{m})$ diameter, $O(1 \,\text{mm})$ wire distance
- Electric field: radial in vicinity of wire (avalanche), homogeneous far away
- Wire with signal \rightarrow 1D position information
 - Single-hit spatial position resolution $\sigma_x = d/\sqrt{12}$

Drift Chamber

drift time of charges used determine distance of track from anode wire

- precise shaping and knowledge of electrical field and properties of gas
- spacial resolution limited by drift-time variations (diffusion!)

 \rightarrow spatial resolutions of ~50 µm possible

Improvement of field quality by additional field wires

Types of Drift Chambers

Cylindrical drift chamber

Time Procjection chamber (TPC)

Electrical field parallel to B-Field limits diffusion along long drift path

- + excellent position resolution
- + excellent dE/dx resolution
- long drift times \rightarrow low rates

View into ALEPH TPC

Semiconductor Detectors

Working principle: semiconductor ionisation chamber

- Detector = diode in reverse bias
- Most common design: hybrid detector
 - Ionisation and charge collection in silicon sensor
 - Amplification in *separate read-out chip*
- Typical segmentation
 - 1D microstrips

(pitch: 25-200 µm, length: 10 cm)

2D pixel

(ATLAS: $50\times400\,\mu\text{m}^2,\,\text{CMS}$: $100\times150\,\mu\text{m}^2)$

part of the CMS silicon strip detector

Principle of Semiconductor Detectors

- Reminder: electronic band structure
 - Electrons in crystal lattice \equiv periodic potential \rightarrow **Bloch states**

 - (Intrinsic) *semiconductors*: small band gap (\leq 5 eV) between valence and conduction band, e.g. effectively 3.6 eV for silicon

Depletion Zone in pn Junction

- Boundary between p- and n-doped semiconductor
 - Majority charge carriers diffuse to other side and recombine
 - Charge-density gradient → E field (*'built-in' voltage* ≈0.6–0.7 V) counteracts diffusion
 - Formation of *non-conductive zone* depleted of charge carriers
 (*depletion zone*)
- Charged particle traversing depletion zone: creation of free charges by ionisation

ightarrow electric current, signal

Biased pn Junction

pn junction without external bias voltage

E_v

Kolanoski, Wermes 2015

Uext

Principle of Semiconductor Detectors (2)

Example: CMS Pixel Sensor

Example: CMS Pixel Module

Example: CMS Silicon Tracker

- Entire tracking detector from silicon: more than 200 m² sensitive area
 - Approximately 25 000 sensors, 75 million channels
 - Inner layers: *pixel detectors* \rightarrow high resolution (up to $\sigma_x = 10 \,\mu\text{m}$)
 - Outer layers: *strips detectors* \rightarrow large coverage

Example: CMS Silicon Tracker

CERN

CMS Barrel Strip Detector

Comparison

gaseous detectors	silicon detectors
high ionisation energy: $pprox$ 30 eV per electron-hole pair	low ionisation energy: 3.6 eV per electron-hole pair \rightarrow <i>larger signal</i> , better energy resolution (S/N)
relatively slow signal: drift velocity $\mathcal{O}(\text{cm}\mu\text{s}^{-1})$	fast signal: $\mathcal{O}(ns)$
many hits but limited granularity (wire distance)	few hits with high granularity
low material budget	<i>higher material budget</i> affects measurement (multiple scattering, conversion,)
ages under radiation	radiation damages well under control

- Applications (strongly simplified)
 - Silicon detectors: *highest rates*, e.g. LHC
 - Gaseous detectors: *highest precision*, e.g. B factories, future International Linear Collider (ILC)
- Often: combination of silicon detectors close to interaction point and gaseous detectors at larger distance

Momentum Measurement

Many layers of tracking detectors in homogeneous magnitic field

tracks from charged particles with transverse momentum pt form arcs with bending radius R:

Lorentz force: $\vec{F_L} = q \, \vec{v} \, \times \, \vec{B}$

centripetal force:

 $F_Z = m \, \vec{v}^2 \, / \, R)$

$$\Rightarrow |\vec{p_t}| = q B R$$

note: this is also valid relativistically

- **Rem.:** 1.) due to z component of momentum, tracks have form of a thre-dimensional spiral ("helix")
 - 2.) practile form of avove equation for q = e :

 $p_t[\mathrm{GeV/c}] = 0.3 B[\mathrm{T}] \cdot R[\mathrm{m}]$

Momentum Measurement: sources of uncertainty

Uncertainties on points of track (σ_{xy} resp. $\sigma_{r\phi}$) lead to uncertainty on transverse momentum: two main contributions:

- spacial resolution of detector depends on track momentum
- multiple scatterig almost constant

contribution of detector resolution (simple, analytical consideration) :

bending radius determined by measuremet of **sagitta** s given a track lengh ~L in the detector

$$s = 2R \sin^2 \frac{\Theta}{4} \simeq \frac{L^2}{8R}$$

measured quantity is the curvature $\rho = 1/R$ of the track with an approximately gaussian uncertainty:

$$p_t = qB/\rho \Rightarrow \frac{\Delta_{p_t}}{p_t} = qB\frac{\Delta_{\rho}}{\rho} = p_t\Delta_{\rho} \Rightarrow \left|\frac{\Delta p_t}{p_t^2} = \Delta\rho \simeq \text{const.}\right|$$

Momentum Resolution

in more detail:

uncertainty on sagitta (Glückstern, NIM 24 (1963)) for >10 track points N:

 $\Delta_s = \sqrt{\frac{A}{N+4} \cdot \frac{\sigma_{xy}}{8}}$, statistical factor A = 720

leads to:

Δ_{p_t}	$-\frac{8p_t}{2}$	
p_t	$-\overline{0.3BL^2}$ · Δ	s

Precision increases with square root of the number of measurements, but quadratically with track length

Large detector with high magnetic field more important than many points !

BL² is an important property of a tracking system

ALEPH: R=2 m, B = 1,5 T \rightarrow BL² = 4,5 Tm², 21 points/track $\rightarrow \Delta pt/pt = \sim 10^{-3} pt$ [GeV/c] CMS: R= 1,2 m, B=1,8 T \rightarrow BL²=5.5 10-14 points/track $\rightarrow \Delta pt/pt = \sim 10^{-3} pt$ [GeV/c]

Momentum Resolution

there is a ~constant contribution from **multiple scattering** to momentum resolution

$$\Theta_{MS} \propto \frac{1}{p_t} \sqrt{\frac{L}{X_0}}$$

$$\frac{\Delta_{p_t}}{p_t} \propto p_t \Delta_{xy} \quad \Rightarrow \left(\frac{\Delta_{p_t}}{p_t}\right)_{MS} \propto p_t \Theta_{MS} = \text{const.}$$

multiple scattering in decector leads to p_t - independent contribution to uncertainty

Remark.:

track parameters of modern detectors are determined by fit to all points including material effects (energy loss, deflection)

Material budget of tracking detectors

TABLE 5 Evolution of the amount of material expected in the ATLAS and CMS trackersfrom 1994 to 2006

	ATLAS		CMS	
Date	$\etapprox 0$	$\eta pprox 1.7$	$\etapprox 0$	$\eta pprox 1.7$
1994 (Technical Proposals)	0.20	0.70	0.15	0.60
1997 (Technical Design Reports)	0.25	1.50	0.25	0.85
2006 (End of construction)	0.35	1.35	0.35	1.50
	luck Dart Oak	EC (000C) 0	75	

Annu. Rev. Nucl. Part. Sci. 56 (2006) 375

Material in or in front of tracking detectors leads to :

- multiple scattering
- photon conversions
- early start of em showers

B-Tagging

Identification ("tagging") of hadrons with b- und c- quarks or of τ^{\pm} leptons leptons with high-resolution tracking detectors:

- measurement of flight distance L_{xy} in xy plane
- measurement of impact parameter do of tracks
- (leptons from semileptonic b decays are also important signature, as well as invariant jet mass or jet shape)

use multivariate methods for simultaneous analyis of all sensitive variables

Calorimeters

Simulated shower with Geant4

Number of secondary particles in shower proportional to particle energy \rightarrow statistical fluctuations $\sim \sqrt{N}$, i.e. $\sim \sqrt{E}$

2005 J. Phys. G: Nucl. Part. Phys. 31 R133

Energy resolution of calorimeters

parameterized as σ_F

$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

- Stochastic term: fluctuations in shower development and sampling (Poisson statistics)
- Noise term: noise in readout electronics
- Constant term: calibration, 'leakage' out of calorimeter

Example: CMS PbWO₄ Crystal Calorimeter

Homogeneous calorimeter: lead-tungstate (PbWO₄) crystal scintillators

- Radiation length $X_0 = 0.89$ cm, Moliére radius of 2.2 cm
- Achieves very good energy resolution: stochastic term 3 %

- Low scintillation light yield (≈ 30 photons per MeV): challenge to readout, requires high amplification in photodetectors (increased noise)
- Yield strongly temperature dependent: 2%/°C at 18°C
 - \rightarrow temperature kept stable within 0.1 $^\circ C$ to retain energy resolution
 - Controlled by integrated laser calibration system

Example: ATLAS Liquid Argon Calorimeter

- Sampling calorimeter: active material liquid argon
 - Ionisation by charged shower particles (26 eV per electron-hole pair)
 - Ions drift to electrodes (voltage $\mathcal{O}(1000)V) \rightarrow$ electric signal
 - Operation temperature pprox 80 K
- Example: ATLAS ECAL
 - Absorption of em showers in lead tiles
 Special feature: accordion structure

 → fast readout, no gaps in detector
 coverage

Design Goals of Calorimeters

- Precise energy measurement (and identification) for electrons, photons, jets, and missing transverse energy
 - High intrinsic energy resolution
 - High *granularity*, *hermetic* coverage (' 4π ' detector)
 - **Depth**: many radiation lengths (ECAL) resp. interaction lengths (HCAL)
 - Otherwise: 'leakage' of shower out of calorimeter (for jets also called 'punch through')
- Possibly usage in trigger system (online data selection)
 - Fast readout O(ns)

Homogeneous calorimeters

- ✓ All energy deposited in active material: *best resolution*
- X Require advanced materials: often more *expensive and heavier*
- X Often very *low light yield*: challenge to readout

Sampling calorimeters

- X Some of the energy deposited in absorber: *limits resolution*
- Absorbing and active material can be specifically chosen: more *flexible* and cheaper design choices

Comparison: ATLAS and CMS

	ATLAS	CMS
Position	<i>Outside</i> of magnet coil: 2–4 X ₀ additional material in front of ECAL	Inside magnet coil: Limited depth (HCAL only 7.2 λ_l at $\eta = 0$: additional 'tail catcher')
ECAL	Lead/liquid-argon (LAr) <i>sampling calorimeter</i> : high <i>granularity</i> and longitudinal resolution	<i>Homogeneous</i> crystal calorimeter (PbWO ₄): high <i>intrinsic energy</i> <i>resolution</i>
HCAL	<i>sampling calorimeters</i> : iron+scintillator (barrel) copper+LAr (endcap)	<i>sampling calorimeters</i> : brass+scintillator (barrel+endcap) iron+quartz fibres (forward)

Energy resolution: ATLAS vs. CMS

$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

Calorimeter	Term	ATLAS	CMS
ECAL (barrel)	stochastic (<i>a</i>)	10 %√GeV	3 %√GeV
	noise (<i>b</i>)	250 MeV	200 MeV
	constant (<i>c</i>)	0.2 %	0.5 %
ECAL+HCAL (barrel)	stochastic (<i>a</i>)	55 %√GeV	70 %√GeV
	noise (<i>b</i>)	3.2 GeV	1.0 GeV
	constant (<i>c</i>)	2.3 %	8 %

Annu. Rev. Nucl. Part. Sci. 56 (2006) 375

Reconstruction of "Particle Flow"

Particle-flow reconstruction: identification and measurement of **individual particles** by optimal **combination** of information from **different subdetectors**

- Effective usage of subdetectors (very simplified!)
 - Tracker: momentum of charged particles
 - Muon system: muon ID (and momentum)
 - ECAL: photon energy
 - HCAL: neutral hadron energy \rightarrow only \approx 10 % of jet energy
- Jets reconstructed from particle candidates: much better energy resolution
- Particle-flow: requires strong magnet field / high granularity (CMS!)

Relevant in particular for jet reconstruction and missing energy

particle flow

 $E_{\rm jet} = E_{\rm tracks} + E_{\gamma} + E_{\rm n}$

Opportunities @ KIT

KIT is strongly involved in the **upgrade** of the **CMS detector** for the LHC high-luminosity phase

Groups of

- Prof. U. Husemann
- Prof. M. Weber

see lecture

"Detektoren für Teilchenund Astroteilchenphysik"

by Frank Hartmann (CMS upgrade coordinator)

Components of a module

Module assembly at KIT

 Diodes and strip sensors being compared with standard float-zone (FZ), oxygenated FZ and magnetic Czochralski silicon.