

# Vorlesung: Teilchenphysik I (Particle Physics I)

### **Particle Accelerators**

#### Günter Quast

Fakultät für Physik Institut für Experimentelle Kernphysik

#### WS 20/21



- 1. History
- 2. Basics principles
- 3. Detectors and Accelerators
  - 1. Interaction of particles with matter
  - 2. Simulation of particle interactions with Monte Carlo
  - 3. Detector Systems
  - 4. Accelerators

#### Literature

K. Wille, *Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen*, Springer Vieweg

K. Wille, *The Physics of Particle Accelerators*, Oxford University Press, 2000









### **Motivation for Particle Accelerators**

#### Nature delivers

ultra-high energy particles:

- Ultra-high energies
- complicated detection medium (atmosphere)
- Iarge-area detectors required



#### Particle accelerators deliver high-energetic particles under laboratory conditions:

- Perfect control of initial conditions
- events originate in one place
- compact, tailored detector designs



- Production of new, heavy particles: maximum mass = centre-of-mass energy M = E<sub>CMS</sub> /c<sup>2</sup>
- resolution of small structures: De-Broglie wave length of beam particles

$$\lambda = \frac{h}{p} = \frac{2\pi\hbar c}{pc} \rightarrow \lambda \,[\text{fm}] \approx \frac{1.24}{p[\text{GeV}]} \qquad \qquad \begin{array}{c} p = 1 \,\text{GeV} \rightarrow \lambda = 1.24 \cdot 10^{-15} \,\text{m} \\ p = 1 \,\text{TeV} \rightarrow \lambda = 1.24 \cdot 10^{-18} \,\text{m} \end{array}$$

#### **Basic Principle**

The Lorentz force 
$$ec{F}_{ extsf{L}} = q(ec{E} + ec{v} imes ec{B})$$

Acceleration of charged partiles by electrical field(s)
 Deflection of charged particles by magnetic fields

**Energy gain** only from electrical fields:

$$\Delta E = \int\limits_{s_0}^{s_0+d} ec{\mathcal{F}}_{\mathsf{L}} \cdot \mathsf{d}ec{s} = q \int\limits_{s_0}^{s_0+d} ec{\mathcal{E}} \cdot \mathsf{d}ec{s} = q U$$

Acceleration voltage of 1 V corresponds to an energy gain of 1 eV

An Accelerator is a machine providing arrangements of electrical and magnetic fields to accelerate, store and focus charged particles.



**Historical Accelerators** 

#### **Historical Accelerators: electrostatic**

#### **Cockcroft-Walton**

1930s; up to 4 MV, µs pulses of up to 100 mA





source: lecture on Accelerator Physics by Anke-Susanne Müller



Cockroft and Waltons elektrostatischer Beschleuniger mit Cockroft "im Labor"

http://www.accelerators-for-society.org/about-accelerators/ timeliner/img/1931.png

#### **The Betatron**

#### Wideröe's "ray transformer"



E.J.N. Wilson, An Introduction to Particle Accelerators, Oxford University Press, 2001

### **Betatron (2)**

Wideröe's "ray transformer": exploiting

$$\mathbf{g} \quad \oint \vec{E} \cdot d\vec{r} = -\int \int \frac{d}{dt} \vec{B} \cdot d\vec{a}$$



Betatrons are still widely in use today (medical applications)

Very compact systems example: 30 MeV with 0.1 m radius



http://www.jme.co.uk/JME-Products-Betatron.aspx

http://commons.wikimedia.org/wiki/File:Betatron\_6MeV\_(1942).jpg

#### Linear Accelerdator ...

... the initial stage of every modern accelerator



- particles from source are acceletated in potention of first drift tube
- voltage is inverted while particle is inside the first tube
- particles leave first drift tube and are accelerated towards the scond tube
- lengths of tubes and distance between them increase, because speed of (low-energy) particles increases

#### **Linac Structure**



**CERN** Micorcosm

#### **Linear Accelerator - principle**





Energy after passing drift tube *i* 

$$E_i = iqU_0\sin(\Psi_s)$$

- r = x kHF(x) is phase of particle kHF is the wave number of high voltage
- U<sub>0</sub> is maximum voltage of HF generator
- $-\Psi_{s}$  is phase of particle relative to HV

Only particles with phase  $\Psi \approx \Psi_s$  can be accelerated

 $\rightarrow$  leads to **particle bunches** 

#### The (so far) largest Linear Accelerator





http://erlangen.physicsmasterclasses.org/exp\_forsc/exp\_forsc\_11.html

operated on the Z resonance, precision electroweak physics with polarized beams

### **Circular Accelerators: the Cyclotron**

#### (M.S. Livingston, E.O. Laawrence, 1930)

- Strong magnetic field bends path of particles on circular orbit

   repeated acceleration within same structure

   Design: D-shaped poles
  - ightarrow particle on spiral trajectory

#### Berkeley: 184-Zoll-Synchrozyklotron





# Still used today for *protons/ions* beams of medium energy

- Nuclear physics
- Cancer therapy
- Material science (e.g. ZAG
  - Zyklotron AG, KIT Campus Nord)

#### **Cyclotron Frequency**

Ansatz: Lorentz force  $\vec{F}_L(\vec{E}=0) = centripetal$  force  $\vec{F}_Z$ 

Non-relativistic approximation:

$$qvB = mrac{v^2}{r} \quad \Rightarrow \quad \omega = rac{v}{r} = rac{qB}{m}$$

- Characteristic *cyclotron frequency* (independent of momentum)
- Typcial values for protons and B = 2 T:  $\omega = 1.9 \cdot 10^8 \text{ s}^{-1}$  $\rightarrow \nu = 30.5 \text{ MHz}$  (radio frequency)
- Relativistic calculation:

$$\vec{F}_L = rac{\mathrm{d}\vec{p}}{\mathrm{d}t} = rac{\mathrm{d}}{\mathrm{d}t}(\gamma m \vec{v}) \quad \Rightarrow \quad \omega = rac{qB}{\gamma m}$$

*Curvature radius* R (cf. tracking):  $R = \frac{p[\text{GeV}]}{0.3gB[\text{T}]}$ 

- Typical values R = 0.5 m, B = 0.5 T: maximum momentum p = 75 MeV
- Maximum energy limited by size (and strength) of magnet, typical sizes up to few 10 MeV

### Weak Focusing in homogeneous B Field

Particles of the same energy have the same curvature radius in an homogeneous B field

→ particle trajectories with slightly displaced positions cross twice per turn



"weak focusing"

used in cyclotrons and early synchtrotrons

## **Accelerator Physics**

- a brief overview -

#### **Circular Accelerators: the Synchrotron**

#### new idea: increase magnetic field syncronous to particle momentum (M. Oliphant, 1943)

keep beam radius ~constant, magnetic field only in beam tube





#### **Circular Accelerators: the modern Synchrotron**

#### breakthrough discovery: Phase Focussing (Veksler 1944, McMillan 1945)

Orbit length *L* in a circular accelerator is given by RF frequency f<sub>RF</sub>:

#### L is a multiple *h* of the "RF wavelength" $\lambda_{RF} = c / f_{RF}$

- h is called "harmonic number"



#### **Principle**

(for relativistic particles) :

- fast particles arrive later
   → receive less acceleration
- slow particles arrive eariler  $\rightarrow$  recive more acceleration

Phase of particles oscillates around optimal phase, the **"stabe phase" Ψ**s

#### "Synchrotron Oscillation"

Phase of particles adjusts itself to compensate energy losses → Phase Focusing

also: Changes of beam energy by inceasing the magnic bending field

### **Accelerating RF Cavities**

- Acceleration of particles by alternating electrical field in a resonating cavity
- enforces and retains bunch structure of beam
- radio frequency @ LHC: 400 MHz



RF power generated in high-power klystron (by electron-density modulation) induced into cavities via RF wave guides

### Synchrotron: strong focusing

another important ingredient: use of **quadrupole magnets** to **focus beam** (Chrostofilos 1950, Courant, Livingston & Synder 1952)



**Dipol B field** 

constant field across aperture; provides bending field

additional **sextupole** and **octupole** magnets are needed to control beam optics



### **Strong Focussing: principle**

- Series of quadrupole magnets with *alternating field gradients* in x, y
- Second magnet in *focal point* of first, and so on
- $\rightarrow$  beam is focussed in x and y





optical analogy

"strong focusing" in modern synchrotrons

#### **Modern Synchrotron**

Alternating-gradient principle reduces beam size and increases energy aperture

beam optics charachterized by "Momentum Compaction Factor" α<sub>c</sub>





Components of a synchrotron

- deflection magnets (dipoles)
- focussing magnets (quadrupoles, sextupoles and octupolse)
- injection magnets (pulsed)
- extraction magnets (pulsed)
- RF acceleration cavities
- vacuum system
- beam diagnostics
- control system
- powerful power supplies

#### **Transverse Beam Optics**

Ensemble of particles, *not* all on ideal circular orbit

- (Co-moving) coordinate system:
  - beam direction z
  - transverse deviation from ideal trajectory x, y
- Expansion of particle trajectory for *small deviations*



Effect of *Lorentz force* on particles in magnetic field  $\vec{B} = (0, B_y, 0)$ 

- Inverse radius of curvature:  $\frac{1}{R(x,y,z)} = \frac{q}{p}B_y(x,y,z)$
- Beam dimensions  $\ll R \rightarrow$  expansion of  $B_y$  in x (analogue for y)

$$\frac{q}{p}B_{y}(x,y,z) = \frac{q}{p}B_{y}(0,y,z) + \frac{q}{p}\frac{\partial B_{y}(0,y,z)}{\partial x} \cdot x + \frac{1}{2}\frac{q}{p}\frac{\partial^{2}B_{y}(0,y,z)}{\partial x^{2}} \cdot x^{2} + \dots$$
$$= \frac{1}{R} + k \cdot x + \frac{1}{2}m \cdot x^{2} + \dots$$
dipole quadrupole sextupole

#### **Linear Transverse Beam Optics**

*Linear* transverse beam optics

$$\frac{q}{p}B_{y}(x,y,z) = \frac{q}{p}B_{y}(0,y,z) + \frac{q}{p}\frac{\partial B_{y}(0,y,z)}{\partial x} \cdot x + \frac{1}{2}\frac{q}{p}\frac{\partial^{2}B_{y}(0,y,z)}{\partial x^{2}} \cdot x^{2} + \dots$$
$$= \frac{1}{R} + k \cdot x + \frac{1}{2}m \cdot x^{2} + \dots$$

- Terminate after linear term: deflecting force *constant* (dipole field) or *linear* with distance x from design trajectory (quadrupole field)
- Realistic accelerators: corrections by higher multipoles

#### *Equation of motion in x* in co-moving coordinate system

(assumption: storage ring, no change of momentum)

$$x''(s) + \left(\frac{1}{R^2(s)} - k(s)\right)x(s) = 0$$
 differential equation of Hill's type

 R(s), k(s): periodic functions in distance s along trajectory reflecting "magnetic lattice" of the machine

Solution:

$$x(s) = \sqrt{\epsilon\beta(s)} \cos [\Psi(s) + \phi]^{-1}$$

β(s): betatron function
ε: emmitance
Ψ(s): phase advance

#### **Describes oscillation around ieal orbit** ("betatron oscillations")

#### **Betatron Oscillation**



#### Betraton function $\beta(s)$

(also: 'beta function', 'amplitude function')

- Quantifies deviation from ideal orbit
- Depends on *beam focus* along s
- Important characteristic quantity: 
   <sup>3\*</sup>
   value of 
   <sup>3</sup>
   function at interaction
   point

value of  $\beta^*$  during LHC Run 2: 30 cm

#### **Phase Space and Emmittance**

### Phase space of beam given

- by x(s) and x'(s) ( $\propto p$ )
- Solution to Hill's equation: *ellipse* in phase space
- Emittance  $\epsilon$  proportional to area of ellipse:  $\mathbf{A} = \pi \epsilon$

*Liouville's theorem*: particle density in phase space is constant for conservative forces

- Typically (approximately) the case in storage rings
- During fill, phase space *deformed* but *density conserved*



#### Emmittance

- Interpretation: quantifies spread in location and momentum of beam particles within ensemble (storage ring: ensemble = bunch)
- $\epsilon \propto 1/p$ : use *normalised emittance*  $\epsilon_n = \gamma \epsilon$  (independent of beam energy)
- Example LHC 2016:  $\epsilon_n = 2.6 \,\mu\text{m} \rightarrow \sqrt{\epsilon\beta^*} = 12.3 \,\mu\text{m}$ (cf. https://lpc.web.cern.ch/lumi2.html)

#### Luminosity of a collider

In an accelerator with counter-rotating bunches of particles, the luminosity is given by the bunch parameters:

$$\mathcal{L} = f \cdot n_b \cdot \frac{N_1 \cdot N_2}{4\pi\sigma_x\sigma_y}$$



- N1, N2: number of particles per bunch
- $-\sigma_x$ ,  $\sigma_y$ : bunch dimensions in *x* and *y* directions
- f : collision frequency
- nb: numer of bunches

 $\mathcal{L}$ , the **instantaneous luminosity**, is related to the **interaction rate** of a process with cross section  $\sigma$  by  $\frac{dN}{dt} = \mathcal{L} \cdot \sigma$ 

The **integrated luminosity**,  $L_{int} =: L = \int \mathcal{L} dt$  is related to the total number of observed events in a data set

unit:  $[L] = cm^{-2}$ , convenietly also  $1/fb = 10^{39} cm^{-2}$ 

interpretation: a dataset of 1 fb<sup>-1</sup> contains (on average) one event of a process with cross section 1 fb

#### **Luminosity: Emmitance and Beta function**

Impact of emittance on *luminosity* 

• Gaussian beam profile: betatron function of particles that are 1 standard deviation  $\sigma$  off the ideal orbit

$$\sigma(s) = \sqrt{\epsilon eta(s)} \quad o \quad eta(s) = rac{\sigma^2(s)}{\epsilon}$$

Strong quadrupoles near the interaction points locally reduce  $\beta$ ; -  $\beta^*$  is value of the beta function at the interaction point

can rewrite formula for the luminosity of an accelerator in terms of beam parameters :

$$\mathcal{L} = f \cdot n_b \cdot \frac{N_1 \cdot N_2}{4\pi \sqrt{\epsilon_x \beta_x^* \epsilon_y \beta_y^*}}$$

#### **Luminosity: typical values**

|                         | peak $\mathcal{L}$ (cm <sup>-2</sup> s <sup>-1</sup> ) | L <sub>in</sub> (fb <sup>-1</sup> ) |
|-------------------------|--------------------------------------------------------|-------------------------------------|
| LEP II                  | 1 · 10 <sup>32</sup>                                   | 3                                   |
| KEKB / Belle            | $2\cdot10^{34}$                                        | 710                                 |
| Tevatron Run-II         | $4 \cdot 10^{32}$                                      | 12                                  |
| LHC Run-I (2010–2012)   | $7.7\cdot10^{33}$                                      | 25                                  |
| LHC Run-II (since 2015) | $2\cdot 10^{34}$                                       | 122                                 |

#### CMS Integrated Luminosity Delivered, pp



### **Synchrotron Radiation**

Lorentz-Transformation **QED:** accelerated charges emit photons  $\rightarrow$  particles kept on a circle Moving frame Lab frame in a synchrotron of electron emit "synchrotron radiation" Acceleration very desired effect in eleration synchrotron light sources 90° - constant energy loss of beam particles limits maximum energy of a circular electron accelerator !  $\pm \frac{1}{2}$  opening angle

desy.de

#### **Energy loss per turn**: $\Delta E = 2\pi \frac{R}{c}P$ scales with $R^{-2}$ and $m^{-4}$

- Electrons at LEP (100 GeV beam energy):  $\Delta E \approx 3$  GeV
- Protons at LHC (6.5 TeV beam energy):  $\Delta E \approx 2 \text{ keV}$

#### **Optical Resonances and Tune**

**Phase advance** per turn:  $\Delta \Psi = \Psi(s + L) - \Psi(s)$ 

Inserting in Hill's equation and integrating over one turn

$$\rightarrow \text{``tune''} \quad Q = \frac{\Delta \Psi}{2\pi} = \frac{1}{2\pi} \oint \frac{\mathrm{d}s}{\beta(s)}$$

tune is the number of oscillations per turn

- betatron tune Q<sub>x,y</sub>
- analog: synchroton tune Q<sub>s</sub>: number of logitudinal oscillations (or oscillations between max. and min. energy)

Danger: in case of integer tunes, m Q<sub>x</sub> +n Q<sub>y</sub>, perturbations hit beam particles always at the same phase;
→ resonant build-up → beam loss !

#### **Optical Resonances and Tune**



### **World Map of Accelerators**

Karlsruher Institut für Technologie



#### e+e- Colliders

| Accelerator (Lab) | Operation  | Type: Particles              | Beam Energy (GeV)    |
|-------------------|------------|------------------------------|----------------------|
| LEP (CERN)        | 1989–2000  | Storage ring: $e^+e^-$       | 45–104.6             |
| SLC (SLAC)        | 1989–1998  | Linear accelerator: $e^+e^-$ | 50                   |
| KEKB (KEK)        | 1999–2010  | Storage ring: $e^+e^-$       | $e^-: 8.0, e^+: 3.5$ |
| PEP-II (SLAC)     | 1999–2008  | Storage ring: $e^+e^-$       | $e^-: 9.0, e^+: 3.1$ |
| Super-KEKB (KEK)  | since 2017 | Storage ring: $e^+e^-$       | $e^-: 7.0, e^+: 4.0$ |
| ILC (Japan?)      | ?          | Linear accelerator: $e^+e^-$ | 250–500              |
| CEPC (China)      | ??         | Storage ring: $e^+e^-$       | 120                  |
| CLIC (?)          | ???        | Linear accelerator: $e^+e^-$ | 1500                 |
| FCC-ee (CERN)     | ???        | Storage ring: $e^+e^-$       | 45–175               |

Further at lower energies: VEPP (Novosibirsk), BEPC (Bejing), DAΦNE (Frascati), CESR (Cornell)

pdg.lbl.gov

### **Hadron Colliders**

| Accelerator (Lab)                                | Operation                            | Type: Particles                                                                       | Beam Energy (GeV)                                                   |
|--------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| HERA (DESY)<br>Tevatron (Fermilab)<br>RHIC (BNL) | 1992–2007<br>1987–2011<br>since 2000 | Storage ring: $e^{\pm}p$<br>Storage ring: $par{p}$<br>Storage ring: $pp$ , heavy ions | <i>e</i> <sup>±</sup> : 30, <i>p</i> : 920<br>900–980<br>100/proton |
| LHC Run-I (CERN)                                 | 2009–2012                            | Storage ring: <i>pp</i> , heavy ions                                                  | 2010/11: 3500<br>2012: 4000<br>(2510/proton)                        |
| LHC Run-II (CERN)                                | since 2015                           | Storage ring: <i>pp</i> , heavy ions                                                  | 6500<br>(2760/proton)                                               |
| HL-LHC (CERN)<br>FCC-hh (CERN)                   | 2026–2035<br>???                     | Storage ring: <i>pp</i> , heavy ions<br>Storage ring: <i>pp</i>                       | 7000<br>50 000                                                      |

pdg.lbl.gov

#### **Energy increase with time – "Livingston Plot"**

#### Empirically: doubling of energy every 6 years

1000

100

En (Mev)

10

IIIIII

1930

1940

1950

a

original plot current plot (M.S. Livingston, 1954) 10 TeV Hadron Colliders e\*e\* Colliders LHC (CERN) 1 TeV 0 NLC TEVATRON Constituent Center-of-Mass Energy (Fermilab) symmetrymagazine.org LEP II SPPS (CERN) LEP (CERN) SLC (SLAC) 100 GeV RISTAN (KEK) PETRA PEP (DESY) (SLAC) Cyclotron CESR (Cornell) ISR (CERN) 10 GeV VEPP IV (Novosibirsk) Josof Inco SPEAR II Electrostolic SPEAR DORIS VEPP III (SLAC) (DESY) (Novosibirsk) ADONE (Italy) 1 GeV **PRIN-STAN VEPP II** ACO (Stanford) (Novosibirsk) (France) 196 0 197 0 198 0 199 0 200 0 2010 Year of First Physics

ansruher institut für rechnologie

#### **The CERN accelerator complex**



### **Magnet Technologies**

#### Normal conducting magnets

- Water-cooled copper coils with iron joke
- Limitation: magnetisation of iron saturates at → B ≤ 2 T

#### Superconducting magnets

- Charge only at surface: coils from NbTi filaments (7 µm) in copper matrix
- Operation below critical temperature: cooling with *liquid Helium at 4 K* (LHC: super-fluid He at 1.9 K)
- Limitation: collapse of superconductivity at *critical current* ('quench') → *B* ≤ 10 T for NbTi





Full cross-section



Rutherford cables: cross-section



View of the flat side, with one end etched to show the Nb-Ti filaments

cerncourier.com

### **LHC Dipoles**

- Identical particles in each beam (e.g. pp) in opposite direction
  - Two beam pipes
  - Magnetic field lines in opposite direction



### **LHC Dipoles**



### **LHC Layout**

- LHC: 8 arcs and 8 straight sections ('insertions')
- Arcs (2.45 km)
  - 23 arc 'cells' with FODO structure (main dipoles, quadrupoles, other multipoles)



- Straight Sections (528 m)
  - Experiments
  - Beam injection
  - RF acceleration
  - Beam dump
- Interaction points: "low-β triplets" with *best-possible focusing*





### SuperKEKB acce – an asymmetric B factory

#### SuperKEKB is an upgrade of

the former  $\ensuremath{\mathsf{KEKB}}$  accelerator

- an example of an (asymmetric) electron-positron collider
- two rings, one for 4 GeV positrons and one for 7 GeV electrons
- centre-of-mass system at Y(4s) resonance is boosted to increase resolution on displaced vertices from B hadron decays
- aiming at a luminosity of 8 x 10<sup>35</sup> cm<sup>-1</sup> s<sup>-1</sup>



**Future accelerators** 

#### **Future Accelerators**

#### Discovery of new phenomena is possible via two roads:

- 1. higher energy to directly produce new particles Requires accelerators with higher energy and/or higher luminosity
  - luminosity increase of the LHC (High-Luminosity LHC, approved)
  - an new proton accelerator with a tunnel of 80 100km length

#### 2. higher precision of measurements

Requires better control of initial conditions and a "clean" environment

- electron-positron collisions at energies of 500 GeV 1 TeV losses due to synchrotron radiation require either
  - a very large ring or
  - a linear collider
- a myon collider (?) very challenging

#### **Higgs Signatures in e+e-**



Simulated Higgs-boson signals with different decay final states for 240 GeV electron–positron collisions envisaged at CEPC, using a PFA-oriented detector design.

### **Ideas for a Future Circular Collider @ CERN**





Large radius needed to keep particles in the ring:

$$\rho$$
 [m] = 3.336  $\frac{p$  [GeV/c]}{B [T]

#### Options:

- electron positron collisions @ 90 350 GeV (Z and Higgs Factory)
- hadron hadron collisions @ ~100 TeV
- electron/positron hadron collisions (?)

### **FCC: technological challenges**





FCC needs 4 x more dipole magnets with twice the field of the LHC

High temperature superconductors for even higher beam energies and as an option for power distribution

#### **FCC: more challenges**

#### Energy in the LHC

■ Magnets: 10 GJ = dir5us A380 mit 700 km/h

Beam: 362 MJ

= 120 kg TNT oder 20 kg Schweizer Keise



CERN protons at 450 GeV V. Kain, H. Burkhardt, CERN

### **The International Linear Collider (ILC)**



- a "mature" concept:
  - superconducting cavities already in use at DESY (European XFEL)
  - technical design report exists
  - experimental collaborations and detector proposals exist

#### possible place: Japan, but decision differed in March 2019

### CLIC (CERN Linear Collider) @ 3 TeV

A novel concept for particle acceleration:

Cavities driven by a particle beam

drive beam 100 A, 239 ns 2.38 GeV - 240 MeV





**Fig. 2.6:** Principle of the two-beam scheme: The beam power in the Drive Beam is converted to RF power in PETS, each feeding two accelerating structures in the Main Beam running parallel at a distance of 60 cm.

CLIC CONCEPTUAL DESIGN REPORT. CERN-2012-007

#### CLIC (CERN Linear Collider) @ 3 TeV



#### **A new Accelerator Complex in China ?**

China's bid for

a circular electron– positron collider

and – later –

a proton-proton machine

in a ~100 km tunnel



Several sites in China under study for a possible 100 km-circumference collider

#### **New concepts for acceleration**

#### Laser Wake Field Accelleration in a plasma

VOLUME 43, NUMBER 4

PHYSICAL REVIEW LETTERS

23 JULY 1979

#### Laser Electron Accelerator

T. Tajima and J. M. Dawson Department of Physics, University of California, Los Angeles, California 90024 (Received 9 March 1979)

An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density  $10^{18}$ W/cm<sup>2</sup> shone on plasmas of densities  $10^{18}$  cm<sup>-3</sup> can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulsers are examined.

- Laser pulse generates plasma wave by ponderomotive force ∝∇l(r)
- Charge separation → longitudinal electric fields
- Acceleration gradients of GeV cm<sup>-1</sup> are achieved



#### **Activities @ KIT**









Contact: Prof. Dr. Anke-Susanne Müller