

Vorlesung: Teilchenphysik I (Particle Physics I)

V14a: Meson-Mixing

Günter Quast

Fakultät für Physik Institut für Experimentelle Kernphysik

WS20/21

Summary Lecture 13b

Concept of quark mixing

- Cabbibo: chared-current couplings for quarks smaller than for leptons → u quark couples to linear combination of d and s quarks
- **GIM mechanism:** flavor-chaning neutral currents (K \rightarrow) suppressed \rightarrow 2x2 mixing matrix, prediction of a new quark, the charm quark
- KM: CP violation requires >3x3 mixing matrix → CKM matrix, 3rd family postulated

CKM matrix

- Unitary complex 3x3 matrix
- physical degrees of freedom:
 - three magnitudes
 - and one complex phase
- Unitarity relations represended as unitarity triangles
- experimentally: strong hierarchy of elements – diagonal dominant
 - → long life times of mesons with heavy quarks

| Vckm | =

- 1. History
- 2. Basics principles
- 3. Detectors and Accelerators
- 4. Theoretical Foundations
 - 1. Relativistic Quantum Mechanics
 - 2. Quantum Field Theory and symmetries
 - 3. Elctroweak Symmetry and Higgs Mechanism
- 5. QCD and Jets
- 6. Analysis Chain
- 7. Flavour Physics
 - 1. Quark mixing and CKM Matrix
 - 2. Meson-Antimeson Mixing
 - 3. CP Violation
- 8. Tests of Electroweak Theory
 - 1. Discoveries
 - 2. Precicion Physics with Z bosons
 - 3. W Boson and electroweak fit

Quantum numbers of hadrons:

- Hadrons produced in strong interactions → **strong** eigenstates
- Strong eigenstates: not necessarily physical particles (= mass eigenstates) or eigenstates of weak interactions → flavor mixing
- Flavor-changing weak processes in systems of neutral mesons: particleantiparticle oscillations

 $|P
angle ~~ \leftrightarrow ~~ |\overline{P}
angle$

Particle – antiparticle sytems with established mixing:

Neutral kaons:	$ K^0 angle = \overline{s}d angle$	\leftrightarrow	$ \overline{K}^{0} angle = s\overline{d} angle$
Neutral D mesons:	$ D^0 angle = C\overline{u} angle$	\leftrightarrow	$ \overline{D}^{0}\rangle = \overline{c}u\rangle$
Neutral <i>B</i> mesons:	$ B_d^0 angle = \overline{b}d angle$	\leftrightarrow	$ \overline{B}_{d}^{0}\rangle = b\overline{d}\rangle$
	$ B_{s}^{0} angle$ = $ \overline{b}s angle$	\leftrightarrow	$ \overline{B}_{s}^{0} angle$ = $ b\overline{s} angle$

Meson Mixing and Box-Diagrams

In the Standard Model, mixing is caused by "box diagrams"

consider **time evolution** of a quantum-mechanical state:

- Starting point: **pure** state $|P\rangle$ or $|\overline{P}\rangle$ created in **strong** interaction
- After time interval Δt: mixture of |P> and |P> with particle decays superimposed (different lifetimes for different particles)
- Phenomenological description of time evolution: Schrödinger equation with "effective Hamilton operator" Σ

Mixing: Time evolution

Formalism:

$$i\frac{d}{dt}\begin{pmatrix}|P(t)\rangle\\|\overline{P}(t)\rangle\end{pmatrix} = \Sigma\begin{pmatrix}|P(t)\rangle\\|\overline{P}(t)\rangle\end{pmatrix} = \begin{pmatrix}M - i\frac{\Gamma}{2}\end{pmatrix}\begin{pmatrix}|P(t)\rangle\\|\overline{P}(t)\rangle\end{pmatrix} \text{ with } M^{\dagger} = M, \ \Gamma^{\dagger} = \Gamma$$

$$Mass \\ matrix \\ Mass \\ matrix \\ ma$$

Components of the effective Hamilton operator:

$$\Sigma = M - i\frac{\Gamma}{2} = \begin{pmatrix} M_{11} - i\Gamma_{11}/2 & M_{12} - i\Gamma_{12}/2 \\ M_{12}^* - i\Gamma_{12}^*/2 & M_{22} - i\Gamma_{22}/2 \end{pmatrix}$$

- M_{11} , M_{22} : quark masses and binding energies given by **strong** interactions \rightarrow **no** oscillations
- **\Gamma_{11}**, Γ_{22} , M_{12} , Γ_{12} : **oscillation** and **decay** through **weak** processes
- CPT symmetry: particle and antiparticles have the **same masses and** decay widths $\rightarrow M_{11} = M_{22} = m$, $\Gamma_{11} = \Gamma_{22} = \Gamma$

Mixing: Time evolution (2)

Diagonalize effective Hamilton operators Σ \rightarrow masses and decay widths of **physical** particles

Ansatz: consider two linear combinations of $|P\rangle$ and $|\overline{P}\rangle$

 $|P_L\rangle = \rho |P\rangle + q |\overline{P}\rangle, \quad |P_H\rangle = \rho |P\rangle - q |\overline{P}\rangle$

with $|P_L\rangle$ "**light**" and $|P_H\rangle$ "heavy" mass eigenstate and *p*, *q* complex coefficients with normalization condition $|p|^2 + |q|^2 = 1$

Time evolution of **physical** particles $|P_L\rangle$ und $|P_H\rangle$:

$$|P_{L,H}(t)\rangle = \exp\left[-iM_{L,H}t - \frac{\Gamma_{L,H}}{2}t\right]|P_{L,H}\rangle$$

Time evolution of strong eigenstates |P> and |P>: transformation using matrix of eigenvectors (p, q) and (p, -q)

$$\begin{pmatrix} |P(t)\rangle \\ |\overline{P}(t)\rangle \end{pmatrix} = \begin{pmatrix} p & p \\ q & -q \end{pmatrix} \begin{pmatrix} \exp\left[-iM_{L}t - \frac{\Gamma_{L}}{2}t\right] & 0 \\ 0 & \exp\left[-iM_{H}t - \frac{\Gamma_{H}}{2}t\right] \end{pmatrix} \begin{pmatrix} p & p \\ q & -q \end{pmatrix}^{-1} \begin{pmatrix} |P\rangle \\ |\overline{P}\rangle \end{pmatrix}$$

Mixing: Time evolution (3)

Result of calulation:

$$\begin{pmatrix} |P(t)\rangle \\ |\overline{P}(t)\rangle \end{pmatrix} = \begin{pmatrix} g_{+}(t) & \frac{p}{q}g_{-}(t) \\ \frac{q}{p}g_{-}(t) & g_{+}(t) \end{pmatrix} \begin{pmatrix} |P\rangle \\ |\overline{P}\rangle \end{pmatrix}$$
with $g_{\pm}(t) = \frac{1}{2} \left(\exp\left[-iM_{L}t - \frac{\Gamma_{L}}{2}t\right] \pm \exp\left[-iM_{H}t - \frac{\Gamma_{H}}{2}t\right] \right)$

Interpretation as **transition probabilities** :

 $|g_{+}(t)|^{2}: \text{ probability for } |\mathsf{P}\rangle (|\overline{\mathsf{P}}\rangle) \text{ to remain in the same state}$ $|q/p|^{2}|g_{-}(t)|^{2}: \text{ probability for } |\mathsf{P}\rangle \text{ to oscillate to } |\overline{\mathsf{P}}\rangle \text{ after time interval } t$ $|p/q|^{2}|g_{-}(t)|^{2}: \text{ probability for } |\overline{\mathsf{P}}\rangle \text{ to oscillate to } |\mathsf{P}\rangle \text{ after time interval } t$

Remark: indirect CP violation if $p \neq q$ (more later)

Mixing: Time evolution (4)

Usual convention: express masses and widths of heavy and light mass eigenstates by **average values and differences**

$$m = M_{11} = M_{22} = \frac{1}{2}(M_H + M_L) \qquad \Gamma = \Gamma_{11} = \Gamma_{22} = \frac{1}{2}(\Gamma_L + \Gamma_H)$$
$$\Delta m = M_H - M_L \qquad \Delta \Gamma = \Gamma_L - \Gamma_H$$
sometimes also: $x = \frac{\Delta m}{\Gamma}$

Transition probabilities as a function of Γ , $\Delta\Gamma$, Δm :

$$g_{\pm}(t)|^{2} = \frac{\exp[-\Gamma t]}{2} \left[\cosh\left(\frac{\Delta\Gamma t}{2}\right) \pm \cos(\Delta m t) \right]$$

Decay Oscillation due to decay width difference Oscillation due to mass difference

Example: Neutral Kaon Mixing

Historically, mass eigenstate were distinguished by lifetime (K-short / K-long) instead of mass (light / heavy)

$$|P_{L}\rangle = |K_{S}^{0}\rangle, |P_{H}\rangle = |K_{L}^{0}\rangle$$
(aon oscillation parameters:

$$\Gamma = \frac{1}{178.8 \text{ ps}}$$

$$\Delta \Gamma \approx \Gamma$$

$$\Delta m = 0.0053 \text{ ps}^{-1}$$

$$\max \text{ same order of magnitude}$$

$$0.4$$

$$0.2$$

$$M_{L}^{0} = \frac{\exp[-\Gamma t]}{2} \left[\cosh\left(\frac{\Delta\Gamma t}{2}\right) \pm \cos(\Delta m t)\right]$$

$$0$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

t (ps)

Example2: Neutral B-Meson Mixing

approximation: mt ist the only relevant quark mas, $V_{tb} \approx 1$

• Result:
$$\Delta m_{b,s} \sim (V_{td,ts}^* V_{tb})^2$$

IVtd and IVts can be determined from oscillation frequency

Measurements of oscillation frequency:

- B_d system: ARGUS (DESY),UA1 (CERN) 1987 (→ large value of Δm_d = indirect hint: top quark very heavy), B factories at SLAC & KEK(<u>more later</u>)
- B_s system: Tevatron, LHCb

Neutral Bd – Meson Mixing

Bd oscillation parameters:

- $\Gamma_d = \frac{1}{1.53 \, \text{ps}}$
- $\Delta\Gamma_d \approx 0$
- $\Delta m_d = 0.507 \, \mathrm{ps}^{-1} \approx \Gamma_d$
- life time approx.
 one oscillation period
- dominant effect: oscillation due to mass difference Δmd

Neutral B_s – Meson Mixing

Bs oscillation parameters:

•
$$\Gamma_s = \frac{1}{1.47 \text{ ps}}$$

- $\Delta\Gamma_s \approx 0$
- $\Delta m_s = 17.77 \, \mathrm{ps}^{-1}$
- Fast oscillation, many periods before decay
- dominant effect: oscillation tue to mass difference Δms

Experimental challenge: resolution of fast oscillation !

B Factories

Large number of B-Mesons needed to perform (precision) measurements

- use bottonium resonances in e⁺e⁻ colliders (DORIS, CESR, PEP-II, KEKb, SupderKEKb, experiments Argus, Cleo, BaBar, Belle (II))
- best choice Y(4S) resonance just above the energy to produce 2 Bd mesons
- approx 50% B⁰B⁰ and 50% B⁺B⁻

example ARGUS experiment at DORIS (DESY)

B-Factories

Electron-positron collider with **asymmetric** beam energies:

- $\Upsilon(4S)$: BB-pair produced approximately **at rest** in e^+e^- center-of-mass frame
- BB rest frame moving relative to laboratory frame → all decay lengths Lorentz boosted → better measurement

BB pair = entangled quantum state (cf. EPR paradoxon)

- Oscillations in B⁰ \overline{B}^0 system → first decay of a B⁰ or \overline{B}^0 determines flavor of other \overline{B}^0 or B⁰
- Observable: decay length difference Δz = O(200 μm)

The LHC as a B Factory

Heavy quarks are copiously produced in hadron colliders

Dominant process: **gluon fusion**

Process kinematics: m_b ≪ √s → momentum fractions of gluons x₁ ≫ x₂ → b and b̄: both emitted either into forward or backward direction

B [±] mesons:	40%

B⁰_d mesons: 40%

- B⁰s mesons: 10%
- B baryons: 10%

Note: Contrary to e⁺e⁻ b factories, QCD effects lead to rapid distruction of quantum-mecanical entanglement of the two b quarks.

Appropriate detector setup: forward spectrometer (LHCb)

Measurements of Bd Mixing

ARGUS/CLEO:

- Symmetric beam energies → time-integrated mixing probability measurement
- Idea: mixing parameters from number of lepton pairs with same charge sign in semileptonic B and B̄ decays (observable: asymmetry χ_d)

- LEP/B factories/Tevatron/LHCb:
 - Time-resolved measurement of oscillation frequency Δm_d
 - Rough idea: count number of B and B̄ decays as a function of Δz (various methods)

Y. Amhis et al., "Averages of b-hadron, c-hadron, and taulepton properties as of summer 2016," <u>arXiv:1612.07233</u> and online update at <u>http://www.slac.stanford.edu/xorg/hflav</u>

Measurements of Bs Mixing

- First measurement of B_s oscillation frequency by the CDF experiment at Tevatron in 2006
- most precise measurements by the LCHb experiment at the LHC

- B_s flavor at decay time: charge of decay products
- B_s flavor at production time: flavor of other B hadron ("opposite sign tag") or search for partner of s̄ quark in B_s ("same sign tag")
- **B**_s lifetime: decay length $L \rightarrow$ decay time t = Lm/p

LHCb: B_s Mixing results

Probability density function to describe observed oscillation signal:

$$P(t|\sigma_t) \sim \Gamma_s \frac{\exp[-\Gamma_s t]}{2} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) \Theta(t) \pm D\cos(\Delta m_s t) \right] \otimes R(t, \sigma_t)$$

Dilution factor (due to mistags)