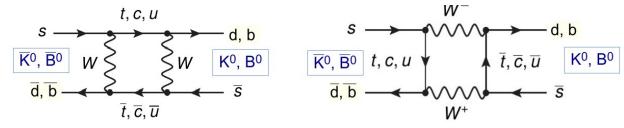


Vorlesung: **Teilchenphysik I (Particle Physics I)**

V14b: CP Violation

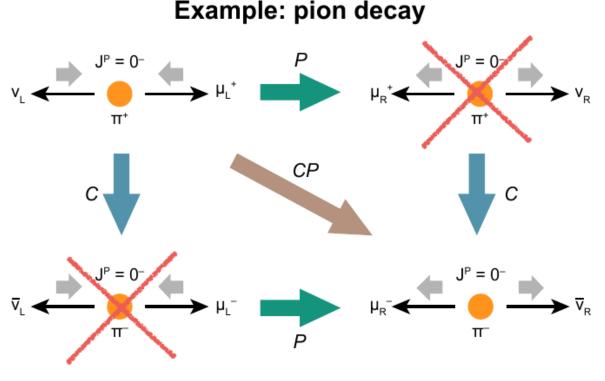
Günter Quast


Fakultät für Physik Institut für Experimentelle Kernphysik

WS20/21

Summary V16: Meson-Anitmeson Mixing

In the Standard Model, mixing is caused by box diagrams

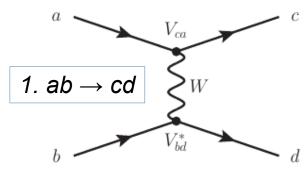

- Precise determination of meson-anti-meson mixing in
 - (asymmetric) electron-positron colliders operating at the Y(4s) resonance
 - bb production in hadron colliders
 requires precise measurement of decay length differences (→ vertex detecctors) and flavor tagging (→ particle idetification)
- Mixing depends on CKM matrix elements and helps to overconstrain them
- "new" or unknown physics contributes to box loops
 - led to the prediction of new particles (charm quark)
 - allows tests of the validity of the Standard Model

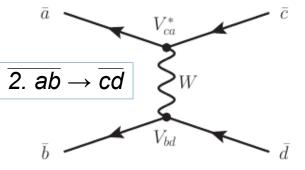
- 1. History
- 2. Basics principles
- 3. Detectors and Accelerators
- 4. Theoretical Foundations
 - 1. Relativistic Quantum Mechanics
 - 2. Quantum Field Theory and symmetries
 - 3. Elctroweak Symmetry and Higgs Mechanism
- 5. QCD and Jets
- 6. Analysis Chain
- 7. Flavour Physics
 - 1. Quark mixing and CKM Matrix
 - 2. Meson-Antimeson Mixing
 - 3. CP Violation
- 8. Tests of Electroweak Theory
 - 1. Discoveries
 - 2. Precicion Physics with Z bosons
 - 3. W Boson and electroweak fit

Reminder: The CP Symmetry

CP Symmetry:

- Charge conjugation C: particle ↔ antiparticle
- Parity operation P: left-handed ↔ righthanded
- Combined CP operations: left-handed (right-handed) particle ↔ right-handed (left-handed) antiparticle




X No right-handed neutrinos/left-handed antineutrinos

CP symmetry is conserved in the electromagnetic and strong interaction as mentioned earlier, EW CP violation possible with three flavour generations

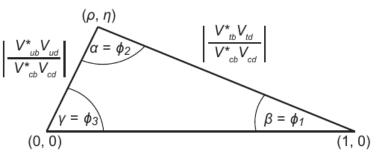
Electroweak CP Violation

charged-current interaction:

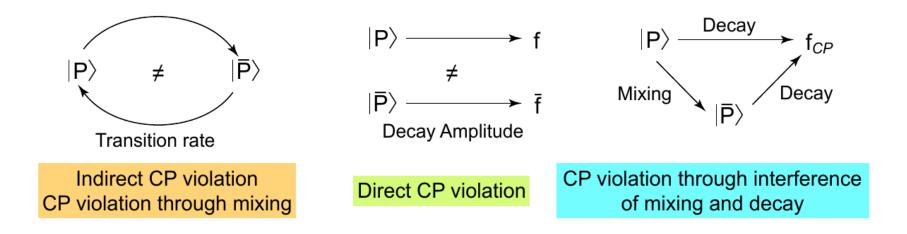
- 1. Process with **particles**: $\mathcal{M}(ab \to cd) \sim V_{ca}V_{bd}^* \left[\overline{c}\left(\gamma^{\mu}\frac{1}{2}(1-\gamma_5)\right)a\right] \left[\overline{d}\left(\gamma_{\mu}\frac{1}{2}(1-\gamma_5)\right)b\right]$
 - CP-transformed process: $\mathcal{M}_{CP} \sim V_{ca} V_{bd}^* \left[\overline{a} \left(\gamma^{\mu} \frac{1}{2} (1 - \gamma_5) \right) c \right] \left[\overline{b} \left(\gamma_{\mu} \frac{1}{2} (1 - \gamma_5) \right) d \right]$
- 2. Process with antiparticles:

$$\mathcal{M}(\overline{a}\overline{b} \to \overline{c}\overline{d}) = \mathcal{M}(cd \to ab) \sim \frac{V_{ca}^* V_{bd}}{V_{ca}^* V_{bd}} \left[\overline{a} \left(\gamma^{\mu} \frac{1}{2} (1 - \gamma_5) \right) c \right] \left[\overline{b} \left(\gamma_{\mu} \frac{1}{2} (1 - \gamma_5) \right) d \right] = \mathcal{M}^{\dagger}$$

For real-valued V_{ca}, V_{bd}, the last two relations are identical, but not if V_{ca}, V_{bd} are complex \rightarrow **CP Violation**


Electroweak CP Violation

CKM matrix for \geq quark families generally complex: $\mathcal{M}_{CP} \neq \mathcal{M}^{\dagger}$


Necessary requirement for CP violation in quark mixing

Reminder: area of unitarity triangle = measure of CP violation

Experimental question: is complex phase δ≠0 realized in nature?

Known **mechanisms** for electroweak CP violation:

Formalism of CP Violation

Reminder: time evolution of strong eigenstates

$$\begin{pmatrix} |P(t)\rangle \\ |\overline{P}(t)\rangle \end{pmatrix} = \begin{pmatrix} g_{+}(t) & \frac{p}{q}g_{-}(t) \\ \frac{q}{p}g_{-}(t) & g_{+}(t) \end{pmatrix} \begin{pmatrix} |P\rangle \\ |\overline{P}\rangle \end{pmatrix}$$

Decay amplitude: matrix element for decay to final state *f*

$$A_f = \mathcal{M}(|P\rangle \to f), \quad \overline{A}_f = \mathcal{M}(|\overline{P}\rangle \to \overline{f})$$

Relevant quantity for CP violation:

$$\lambda_{f} = \frac{q}{p} \frac{\overline{A}_{f}}{A_{f}} = \left| \frac{q}{p} \right| \left| \frac{\overline{A}_{f}}{A_{f}} \right| \exp[i(\phi_{\text{mixing}} - \phi_{\text{decay}})]$$

$$Phase difference \rightarrow \text{CPV through mixing-decay interference}$$

$$|\overline{A}_{f}/A_{f}| \neq 1$$

$$\rightarrow \text{direct CPV}$$

CP violation is measurable in interference experiments capable of **detecting relative phases** (analogous to double-slit experiment)

CP Violation in Kaon System

K-mesons produced in stron-interaction reactions have a definite quark content:

 \rightarrow initial K₀ or \overline{K}_0 state

These are, however, not the mass eigenstates, which result from mixing through weak interaction:

- **K**⁰s ("K-short"): proper lifetime $c\tau$ = 2.7 cm, decays mainly into $\pi\pi$
- **K**⁰_L ("K-long"): proper lifetime $c\tau = 15$ m, decays mainly into $\pi\pi\pi$
- Reason for long K^{0_L} lifetime: $m(\pi\pi\pi) \leq m_K$

CP eigenstates:

- Final states with *n* pions: CP eigenstates with $CP | n \cdot \pi \rangle = (-1)^n | n \cdot \pi \rangle$
- CP eigenstates of neutral kaons:

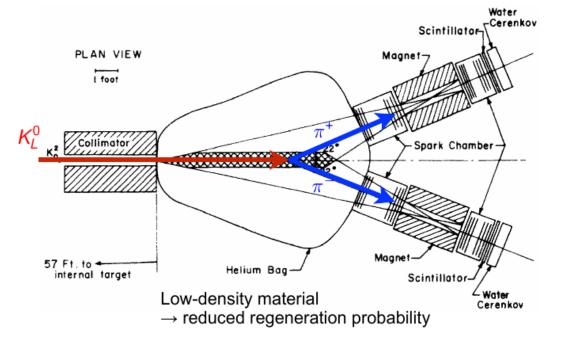
$$|K_1\rangle = \frac{1}{\sqrt{2}} \left(|K^0\rangle - |\overline{K}_0\rangle \right), \quad |K_2\rangle = \frac{1}{\sqrt{2}} \left(|K^0\rangle + |\overline{K}_0\rangle \right)$$

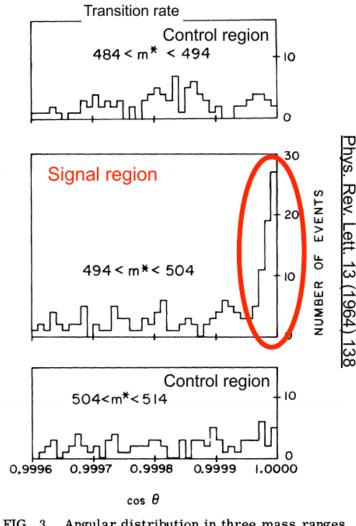
? Do the observed mass eigenstates, Ks and KL, correspond to the CP eigenstates, K₁ and K₂ ?
 Experimental Answer: no, observation of decay of KL to 2 pions → CP Violation

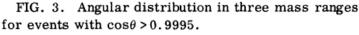
Discovery of CP Violation

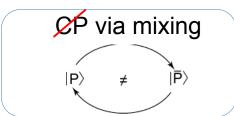
Discovery experiment:

- (J. Christenson, J. Cronin, V. Fitch, R. Turlay, PRL 13 (1964) 138)
- Prepare pure K_{L}^{0} beam \rightarrow decays mainly into CP eigenstate $\pi\pi\pi$ (eigenvalue CP = -1)
- If decay $K^{0}_{L} \rightarrow \pi\pi$ (*CP* = +1) is observed → **indirect CP violation** (through mixing of K⁰ and \overline{K}^{0})


Recipe: how to make a kaon beam


- **Direct** protons on fixed target \rightarrow beam of secondary particles
- Remove all charged particles from beam with magnets and collimators → neutral kaon beam
- Let all K⁰_S decay (approx. 20 m of decay tunnel): pure K⁰_L beam (cf. kaon mixing)
- Remark: K^{0}_{S} may be **regenerated** due to different strong interaction probabilities of K⁰ and \overline{K}^{0} in matter (\rightarrow background, to be controlled)


Discovery of CP Violation: Cronin-Fitch Experiment


Setup: two-arm spectrometer

- Measure momentum of π[±] (magnetic spectrometer)
- Signal: invariant ππ mass m* ≈ 498 MeV and angle of ππ system relative to beam cos θ ≈ 1

CP Violation in Neutral Kaon System

Results of Cronin-Fitch experiment

- 45 ± 9 candidates for decay $K_{L} \rightarrow \pi^{+}\pi^{-}$ in 22,700 K_{L}^{0} decays
- Mass eigenstates K⁰_S, K⁰_L are not the same as CP eigenstates
 - \rightarrow K₁ and K₁ have a small admixture of "wrong" CP state,

$$\begin{aligned} |K_S^0\rangle &= \frac{1}{\sqrt{1+|\epsilon|^2}} \left(|K_1\rangle + \epsilon \, |K_2\rangle \right) \\ |K_L^0\rangle &= \frac{1}{\sqrt{1+|\epsilon|^2}} \left(\epsilon \, |K_1\rangle + |K_2\rangle \right) \end{aligned}$$

With small (complex) parameter ε value today (PDG 2017): $|\varepsilon| = 2.228(11) \cdot 10^{-3} (\rightarrow 10^{-3} \text{ effect})$

Discovery of Direct CP violation in K system

Direct CP violation in neutral Kaon system described by an additional parameter ε'

Compare K⁰_L and K⁰_S decays into two neutral or charged pions

$$\eta_{+-} = \frac{A(K_L^0 \to \pi^+ \pi^-)}{A(K_S^0 \to \pi^+ \pi^-)} \approx \epsilon + \epsilon', \quad \eta_{00} = \frac{A(K_L^0 \to \pi^0 \pi^0)}{A(K_S^0 \to \pi^0 \pi^0)} \approx \epsilon - 2\epsilon'$$

Observable: double ratio

$$R = \frac{\Gamma(K_L^0 \to \pi^0 \pi^0) / \Gamma(K_S^0 \to \pi^0 \pi^0)}{\Gamma(K_L^0 \to \pi^+ \pi^-) / \Gamma(K_S^0 \to \pi^+ \pi^-)} = \left|\frac{\eta_{+-}}{\eta_{00}}\right|^2 \approx 1 - 6 \operatorname{Re}\left(\frac{\epsilon'}{\epsilon}\right)$$

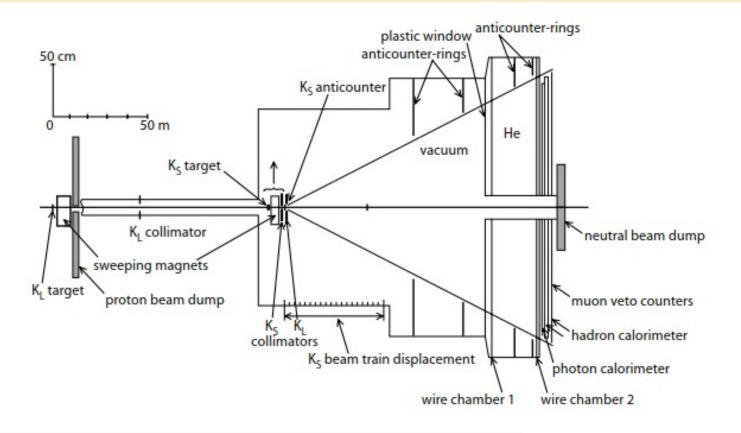
Measurement idea of 2nd generation experiments:

to control systematics, study

- KS and KL beams and

- neutral and charged final states in the same experiment

■ 1980s: NA31 (CERN) $\rightarrow \epsilon'/\epsilon \neq 0$, E731 (Fermilab) $\rightarrow \epsilon'/\epsilon = 0$

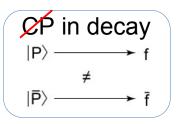

■ 1990s: NA48 (CERN), KTeV (Fermilab) $\rightarrow \epsilon'/\epsilon \neq 0$

Result (PDG 2017): **Re(\epsilon'/\epsilon) = 1.66(23)**·**10**⁻³ (\rightarrow 10⁻⁶ effect)

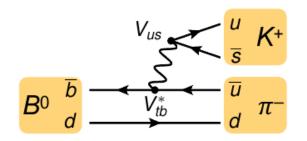
First evidence for direct CP Violation – NA31 (1988)

- KL and Ks measured in momentum bins at the same location with mobile Ks target reproducing the decay region of KL
- simulaneous measurement of neutral and charged decays
 - $-\pi^{\pm}$ detection in wire chambers
 - detection of photons from π^0 decays in liquid-argon calorimeter and veto-counters

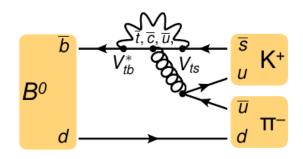
veto on e[±] and µ[±] (from semileptonic decays) in calirometers and myon veto

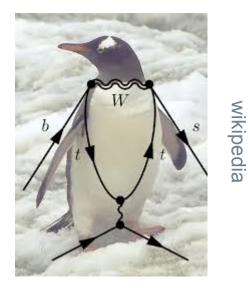


first evidence at 3σ level for direct CP violation


Phys.Lett. B206 (1988) 169-176

CP violation in B decays


interference of two decay amplitudes in $B \to K \pi$



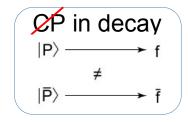
Tree-level Feynman diagram:

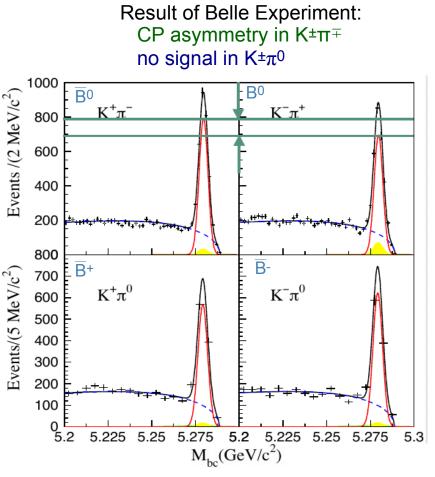
One-loop diagram (J. Ellis: "penguin diagram"):

CP violation in B decays (2)

 $B^0 \rightarrow K\pi$ has small branching fraction: $B(B \rightarrow K^+\pi^-) = 1.96(5) \times 10^{-5}$

CP asymmetry


$$A_{\rm CP} = \frac{N(\overline{B}^0 \to K^- \pi^+) - N(B^0 \to K^+ \pi^-)}{N(\overline{B}^0 \to K^- \pi^+) + N(B^0 \to K^+ \pi^-)}$$


B-meson reconstruction:

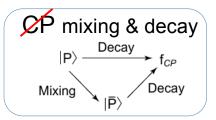
- In center-of-mass frame: $E_{\rm B} = E_{\rm \overline{B}} = E^*_{\rm beam}$
- Beam-constrained mass:

$$M_{bc} = \sqrt{(E_{beam}^*)^2 - (\mathbf{p}_B^*)^2}$$

 \mathbf{p}^*_B : B-meson momentum reconstructed from π and K in center-of-mass frame

Phys. Rev. D87 (2013) 031103

CP Violation in B system: sin 2β


CP violation through mixing – decay interference

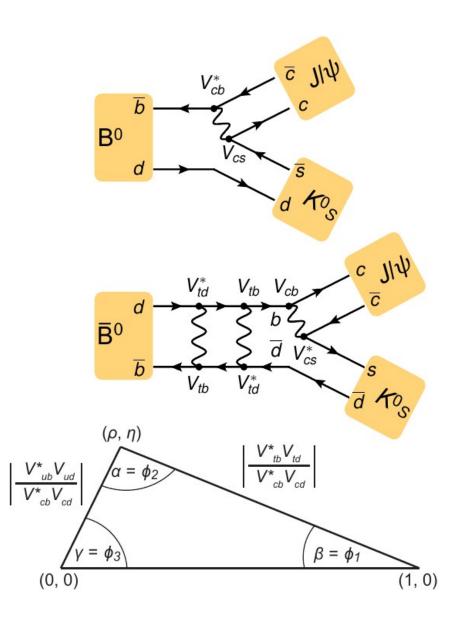
- Particle and antiparticle decay into the same CP eigenstate f_{CP}
- Observable: time-dependent CP asymmetry

$$\mathcal{A}_{f_{CP}} = \frac{\frac{d\Gamma}{dt}(|\overline{P}\rangle \to f_{CP}) - \frac{d\Gamma}{dt}(|P\rangle \to f_{CP})}{\frac{d\Gamma}{dt}(|\overline{P}\rangle \to f_{CP}) + \frac{d\Gamma}{dt}(|P\rangle \to f_{CP})} = \frac{2 \operatorname{Im}(\lambda_f)}{1 + |\lambda_f|^2} \operatorname{sin}(\Delta mt) - \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \operatorname{cos}(\Delta mt)$$

with $\lambda_f = \frac{q}{p} \frac{\overline{A}_f}{A_f}$

Golden channel: $B^0 \rightarrow J/\psi \ K^0s$

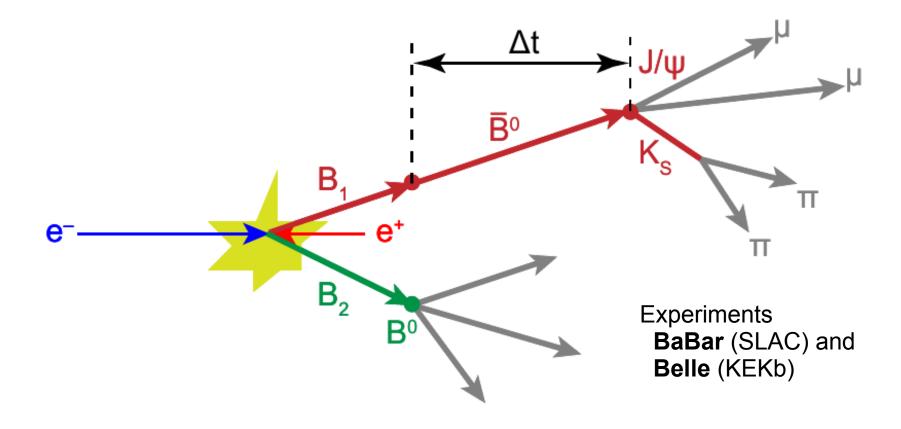
- C_f = 0: no direct CP violation
- Small theoretical uncertainties caused by hadronization
- But: small branching fraction 8.73(32)×10⁻⁴ (PDG 2016)
- Historically: first observation of CP violation in B-meson system (BaBar, Belle, 2001)

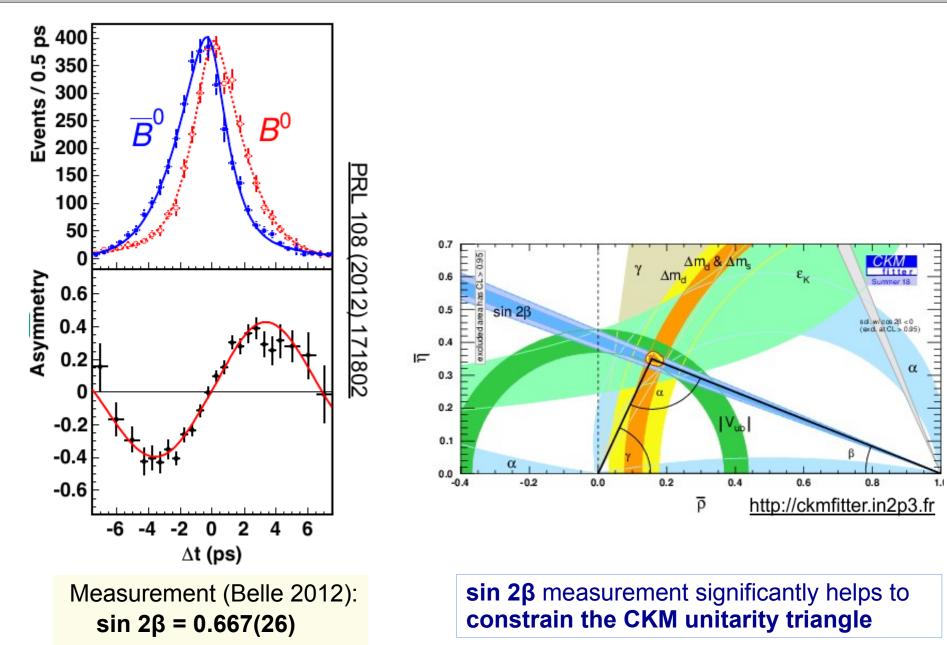

CP Violation in B system: $sin 2\beta$ (2)

•
$$\lambda_f$$
 for $B^0 \rightarrow J/\psi$ K^0_S :
 $\lambda_{J/\psi \ K_S^0} = -\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} \cdot \frac{V_{cb}^* V_{cs}}{V_{cb} V_{cs}^*} \cdot \frac{V_{cs}^* V_{cd}}{V_{cs} V_{cd}^*}$
BB Mixing B Decay KF Mixing

Wolfenstein parameterization:
 V_{tb} = 1; V_{cb}, V_{cs}, V_{cd} real;
 complex phase only for V_{td}

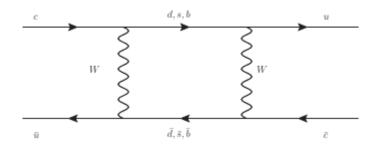
$$\lambda_{J/\psi \ K_S^0} \approx -\frac{V_{td}}{V_{td}^*} = -\exp[2i \arg(V_{td})]$$


• Mixing-induced CPV ~ Im(λ): Im $\left(\lambda_{J/\psi \ K_S^0}\right) \approx -\sin \left[2 \arg(V_{td})\right]$ = $-\sin \left[2 \arg(1 - \rho - i\eta)\right]$ = $\sin 2\beta \equiv \sin 2\phi_1$


CP Violation in B system: $sin 2\beta$ (3)

Measurement of time-dependent CP asymmetry

- B₁ flavor at production: tag flavor of B₂
- Reconstruct B_1 via **CP eigenstate** J/ ψ K^0s in decay $\mu\mu \pi\pi$
- **Determine lifetime difference** Δt via **decay length difference**
- Extract CPV parameter sin 2β from **fit** of CP asymmetry distribution



CP Violation in **B** system: sin 2β (4)

Latest news: CP violation in D system

Mixing in D-System is very small (cu state, GIM and CKM suppressed)

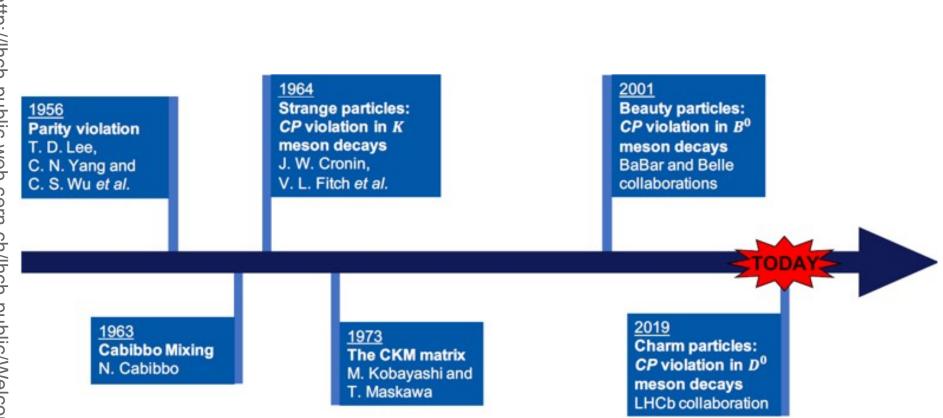
Discovery channels:

■ D⁰, D⁰ → K⁺K⁻ ■ D⁰, $\overline{D}^{0} \to \pi^{+}\pi^{-}$ Observable: $A_{CP}(f; t) \equiv \frac{\Gamma(D^{0}(t) \to f) - \Gamma(\overline{D}^{0}(t) \to f)}{\Gamma(D^{0}(t) \to f) + \Gamma(\overline{D}^{0}(t) \to f)}$

Phys. Rev. Lett. 122 (2019) 211803

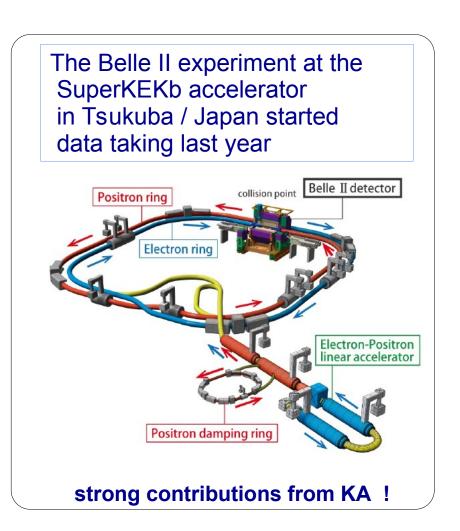
Assuming universality between K and π decay modes,

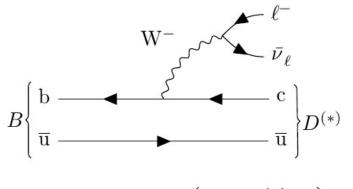
 \rightarrow differenced between K⁺K⁻ and $\pi^+\pi^-$:

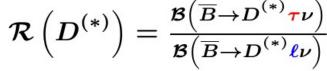

Result: $\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$ largest contribution: $\Delta a_{CP}^{\text{dir}} = (-15.7 \pm 2.9) \times 10^{-4}$

$$\Delta A_{CP} \equiv A_{CP}(K^{-}K^{+}) - A_{CP}(\pi^{-}\pi^{+})$$
$$\approx \Delta a_{CP}^{\text{dir}} - \frac{\Delta \langle t \rangle}{\tau(D^{0})} A_{\Gamma}$$

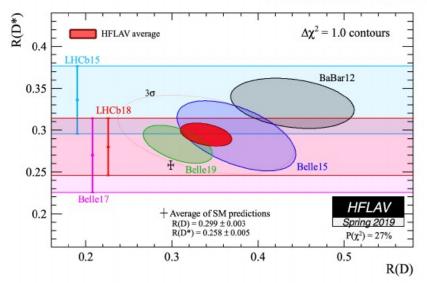
 Δa^{dir} : direct CP asymmetry $\Delta < t>$: difference between mean decay times K+K- and $\pi^+\pi^-$ Ar: asymmetry between decay widths


First observation of CP violation in charm system, consistent with expectations from the Standard Model


CP Violation: History



Appetizer: Anomalies in B system


Results of measurements by B-factories and at LHCb show some "tension" wrt. SM:

Belle 19 1904.08794

Source: Talk by Pablo Goldenzweig at Planck 2019 conference in Grenada/Spain

Summary V14b: CP violation

- CP symmetry is conserved in electroweak and strong interactions
- CP is violated in the weak interaction
 - indirect: in particle-antiparticle mixing
 - direct: different decay amplitudes for particles and antiparticles
 - through interference of mixing and decay to the same CP eigenstate
- Status 2019: CP violation observed
 - in neutral kaon system
 - in neutral B mesons
 - direct in charged B-mesons
 - difficult to observe in charm sector due to small mixing and long-range QCD effects, discovered by LHCb in 2019 in difference between $D^{0}, \overline{D}^{0} \rightarrow K^{+}K^{-}$, $\pi^{+}\pi^{-}$
- CP violation in quark sector not strong enough to explain matter dominance in erarly universe; need additional sources of CP violation (QCD ? neutrinos ?)

Appendix: Operators

OperatorParity:

P

 \rightarrow

$$= \gamma^0 \qquad \qquad \Psi(-\vec{r}) = P\Psi(\vec{r})$$

Charge Conjugation Operator:

$$C = \mathrm{i}\,\gamma^2\,\gamma^0 = \begin{pmatrix} & -\mathrm{i}\sigma^2 \\ -\mathrm{i}\sigma^2 & \end{pmatrix} \qquad \qquad \Psi_C = C\bar{\Psi}^T$$

$$CP\Psi(\vec{r},t) = i\gamma^2\gamma^0\Psi(-\vec{r},t)$$

$$\overline{\psi}_1\gamma_\mu\psi_2 \xrightarrow{C} -\psi_1^T C^{-1}\gamma_\mu C\overline{\psi}_2^T = \psi_1^T\gamma_\mu^T\overline{\psi}_2^T = -(\overline{\psi}_2\gamma_\mu\psi_1)^T = -\overline{\psi}_2\gamma_\mu\psi_1$$