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Overview

During 1960s and early 1970s: electroweak theory proposed theoretically

s Formulation: S. Glashow (1961), Brout-Englert-Higgs-Mechanism
as important ingredient (P. Higgs et. al. 1964), S. Weinberg, 1967)

s established as a renormalizable theory: G. ‘t Hooft, M. Veltman (1971)

Since then: Electroweak Theory established experimentally
Questions:

s Do neutral currents exist ?

s Do massive gauge bosons W and Z exist ?
s Are all coupling strengths as predicted ?

# Does the Higgs boson exist ?

This part of the lecture:

overview of first steps towards
establishing the Electrowek Theory experimentally




Search for Neutral Currents

Neutral Currents: mediated by neutral exchange boson,
coupling fermion-gntifermion pairs to fermion-antiferminon pairs,
like electromagnetic interactions mediated by photons

—

Electroweak interactions of charged particles at low energeries
are dominated by electromagnetic processes
— impossible to observe neutral currents.

The way out: scattering experiments with neutrinos
CERN neutrino beam (since 1970):

® Protons from CERN PS on target — muon neutrinos, e.g. from n+ — utv,

B Detection: bubble chamber experiment Gargamelle

Proton
Beam

Target Magnetic Horn Decay M Absorption



Bubble Chamber Gargamelle

One of the largest bubble Chambers ever built

s a cylinder 4.8 m long, 1,9 m diameter,
filled with 12’000 liters of liquid Freon (CF3Br)

s operated close to boiling point
— ionisation of charged particles leads to gas bubbles along the track

4 events registered on
photorgraphic film

s digitised by humans using
an early version of
a computer mouse

Yo' u4a9°spo



Discovery of Neutral Currents

t-channel reaction of a muon-neutrino with electrons or nuclei
without a muon in final state

Neutral v, v,

Current
/ ENC} 1GeV
Z <

NC evenli candidate

Charged ’
} candidate
e v CC event candidate Nucl. Phys. B73 (1974) 1

® Neutrinos interact with electrons and atomic nuclei
® Sign of charged-current interaction: muon in final state — long track

@ Sign of neutral-current interaction: scattered electron
— electromagnetic shower (bremsstrahlung and e*e- pair production)



A Neutral-Current Neutrino-Electron interaction

._’{-_ -~
Neutrino \
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W and Z Bosons

Production process (“Drell-Yan prozess”):

lepton production in hadronic interactions
f £+ g’ £+

f £- q v

Requirements to produce real W and Z bosons at accelerators:

Center-of-mass energy of fermions in initial state around expected boson
mass (approx. 100 GeV)

Fixed-target setup: Vs = V2mp,E — 5000 GeV beam energy — unrealistic

Electron-positron collider: Vs = E1 + E2 — 50 GeV beam energy
— technically feasible only from the 1990s, only Z production

Proton-antiproton collider: production of W and Z bosons by annihilation
of valence quark in proton and valence antiquark in antiproton — ok

Momentum fractions of colliding valence (anti)quarks x1 = x2 = 0.2

— estimated center-of-mass energy:

V3§ ~ /71725 = 100 GeV — /5 = 500 GeV



SpES -The CERN Super Proton Antiproton Synchrotron

® SPS (Super Proton Synchrotron):
new CERN syncrotron (from 1976)
6.9 km circumference, 400 GeV protons

® Idea (C. Rubbia, 1976): upgrade SPS to Stochastic Cooling: Principle

transverse

a proton-antiproton collider — SppS AN i

B SppS center-of-mass energy: initially
540 GeV, later upgraded to 630 GeV

Challenges for antiproton beam:

® Antiproton production: proton beam
on target: approx. one antiproton for

¥ b 26 = 270Gavic

® Problem: very large antiproton ~ SYNGHAOTAON

emittance — reduction without i

violating Liouville’s theorem

Idea: stochastic cooling with beam 0 deui
pick-up and kicker (S. van der Meer, 1968) ‘\\ AR o 0 2nGase

P 3,5 —= 26 Gev

www.nobelprize.org

"7.)1984: S. van der Meer and C. Rubbia




SppS and the Detectors UA1 and UA2

Further Challenges:

B Protons and antiprotons share the
same beam pipe

B Detectors: hermetic 4 detector
for the first time at hadron colliders

UA1 and UAZ2 experiments
(“underground area”),
data taking from 1981

UA2 Experiment




Discovery of the W Boson

" Process: pp —> W — v (€ = e, ,u)\
q e
W+
9 v /

Analysis strategy:

W Starting point: charged leptons
— clean detector signature (approach still
used at hadron colliders today)

® Neutrino detection: missing transverse

momentum (MET) MET = Missing E_T:
is determined from sum of transverse momenta
of all particles in detector — hermeticity is crucial !

® Two-body decay W — fv: lepton and neutrino -
(MET) emitted back to back in W-boson rest frame

@ Background: QCD jet production — no preferred
relative directions of lepton and MET

a EVENTS WITHOUT JETS
MET bty
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Discovery of the Z Boson

T T T
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Analysis strategy: .."‘CE Second Level Cuts
g 6} 6 Events .
® Invariant mass of the lepton pair: - [’ B i
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neglected) Phys. Lett. B126 (1983) 398




UA1l event picture

MERLIN-UR1 VERS. &O9

RUN NO= EBOSS

CAMAC DATE 30- Y-83

EVT NO 1010

CAMAC TIME 18:53:
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VERY PRELIMINRRY
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Neutrino - Electron Scattering

Studies of neutral currents with neutrinos revealed the structure of the
Z — couplings to neutrinos and electrons

Z is a mixture of the SU(2)L and the U(1) gauge boson,
given by the weak mixing angle and the fermion charge —

s neutrino coupling is purely left-handed, i.e. has equal contributions
from vector (coupling in front of vy, term ) and axial vector coupling (ysy. term)

# electron coupling is not purely left-handed, with different vector and axial
vector components

Example: CDHS

® CERN-Dortmund-
Heidelberg-Saclay
(Warsaw) collaboration

® [ron-scintillator
sampling calorimeter
— hadron calorimeter
and spectrometer at the
same time

B Calorimeter interleaved
with drift chambers



Neutrino - Electron Scattering

(Anti-)Neutrino Beam: NC

S — ) Difference between ve and vy
— 5

(1 — 7s)

Ve, 7
Ve Ve “eu Ve ® v, only Z-Boson exchange (NC)
Z Z ® v. and e: members of the same
o e~ e _ — o isospin doublet: W-boson
Y9V — gas) *(gv — gars) exchange (CC) possible

Electron-(Anti-)Neutrino Beam: CC

Ve V(1 —=5)

Couplings:

e B Neutrinos: pure V-A coupling to
W W and Z boson (gv=ga=1)
W Electrons: gv, ga # 1
- Ve




Neutrino - Electron Scattering

Total cross sections expressed in terms of vector (yu)
and axial vector (ysyu) couplings:

Precision today totally

= o [(9V)* = 9vg4 + (94)°]

0000000

BBBBBBB

9a

These are the equations of ellipses in the gv - ga plane

dominated by results on
the Z resonance (see later)

162 (9002) Lzv "day sAud
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Electroweak precision tests at "Z Factories”

Studies of the Z-boson couplings to fermions test the heart of the EW interaction,
the mixing of the neutral Bosons of the U(1 ) and the SU(2)L symmetries

Z,\ ([cosBw —sinby WS
A,  \sinfw cos Oy B,

g

!
sinfy = ——2— cosfy = ——L=—

The matrix element M of Z — ff processes (in leading order)

. _
T ffe' fe f 2
Mp=| ) +>7<
e fe" f
e (2 e £2 o P e o
O
+ £ et £l e* £ e’ r

Photon Z Photon — Z Interference term

_|_

[

Cross section: o(e*e™ — ff) = 0y + 0 /7 + 07
® Vs <« mz: photon exchange dominates — only QED effects

® Vs = mz Z boson exchange dominates, photon exchange and interference
term negligible



Weak mixing angle sin2 6w and Z-boson couplings

Electroweak theory in lowest order:
weak mixing angle sin2 BW give by
- ratio of left- and right-handed fermion-couplings or
- ratio of squared W and Z boson masses

f f 2
. 9 . I3 9u L My
sin"Ow = =5 |1 —- 7% | = 1——
2Q Ja my
gt =11 axial vector coupling ( factor of ysyu term in £)

gf = If —2 Qsin® Ow  vector coupling ( factor of yy term in £)
or, equivalently:

9{ = %(9{; + g(fl) left-handed coupling

g, = 2(gt —g¢t)  right-handed coupling

(— later)




The e*e- — ff cross section (lowest order)

28 ]_ dO_ew _|_ _ r
w N{ dCOSH(e e i) =
/ 2 2

“color factor”; ’\Oé’ (1 + COS 92

3 for quarks, Tyr

1 for leptons

—8aR{x(s)} [gvegve(1 + cos® 0) 4+ 2gacgarcos b]

J/

N

~v — 7 interference

+16|x(s)|? [ (9% + 9re) (93¢ + gag) (1 + cos® 0)

\

+89vegaegvegas cos b |
2

Z
with (8) = -2 S : :
X 87v/2 s—m2+ilzmy I'z: Z boson total width

Breit-Wigner Propagator



Cross-section (pb)
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Measurements of ete- — ff

e'e"—hadrons

CESR
S DORIS |
5 PEP

PETRA

B I
: K]IEKB TRISTAN SLC

PEP-1I

3 LEP I LEP II ;

0 20 40 60 80 100 120 140 160 180 200 220

Centre-of-mass energy (GeV)

Cross Section at Z resonance almost a factor ~1000 higher
than that of QED (photon exchange) processes

2S¢ (900¢) Lev "day SAyd



Experimental Measurements

The task: Measurement of the
differential cross section at different energies around the Z peak

- terms proportional to cos28 contribute to total cross section
o L Ncand — kag
tot —
© € - fL

JF=/W/2 do d . T do do “Forward” “Backward” |
0

* oot (V5) and App(y/s) are the basic measruements at e*e- colliders
s polarised electrons (SLC) give additional information
s in final states with tau leptons, polarisation can be measrued as well




Early measurement of Forward-Backward asymmetry
with this knowledge, can go back in time:

DESY, Hamburg, e*e- storage ring PETRA, 1981

x Y, 02o20—- - — 7
Interference between y* and ‘ ' ! _ b ]
Z boson exchange already ! e'e” — iy JADE.
visible for Vs < m; r —— QED »WI

Example JADE experiment: 10 ——- QED

Angle between outgoing u* and
incoming e* with fits to the data:

p(1+cos? 0) + q cos 0O (full curve)
and p(1+cos? B) (dashed curve)

S Elds% [nb-GevZ-sr]

Observed asymmetry:
ArB= (-11.8 £3.8 )% I
at average Vs = 33 GeV o ..

10 05 00 05 10
cos ©

(2861) 2 9801 1o ‘shud

Combined results of the DESY Experiments Jade, MARK J, Pluto and TASSO:

ArB= (-7.7 £2.4)% — indirect evidence of the Z-Resonance
before the discovery of the Z Boson




Z-Factories:
the Large Electron Positron Collider LEP

OPAL Experiment

ALEPH Experiment

=




Example: Opal Experiment

Electromagnetic M
calorimeters ) on

Hadron calorimeters
and return yoke

Jet
chamber
Vertex
chamber
Microvertex
detector
Tracking Detector Calorimeters Muon Detector
sactromagnelic hatronic
Z chambers
e . Solenoid and
=X
pressure vessel
Presampler
Forward Time of flight
detector » detector
Silicon tungsten
auler deteciors luminometer

inner delectars

http://opal.web.cern.ch/Opal/




Z-Factories:
The Stanford Lineaer Collider

i ’/"/ E,ampmg

. /' INgs /

SLAC Large Detector (SLD)

7 Positron & Support
;' Return Line G‘{S‘ Arfhpes
o Magnet Coil
/ e g
Calorimeter b G

Moveable Door
Luminaosity Monitor

£/ Pasitron

Source
“"  Positrons

Cerenkov Ring
Imaging Detector

Arc Bending
~ Magnets

Final Focusin§
Magnet

Chambers
SLD Detector

SLAC Linear Collider

http://www-sld.slac.stanford.edu
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Z-Factories: Overview

e*e- collider with Vs = mz = 91 GeV (,at the Z pole”)
Experiments: hermetic 4 detectors

- LEP (1989-2000) SLC (1989-1998)

LEP 1 (1989-1995):

Data-Taking Vs=mz=91 GeV Vs =mz=91 GeV

Periods LEP 2 (1996-2000): Polarized electrons since 1992
Vs = 160-207 GeV

Mark Il (until 1991),
m ALEPH, OPAL, DELPHI, L3 SLD (1992-1998)
Z Boson Decays ‘
17,000,000 600,000 (polarized)




The first Event at LEP

Bun 443 Eul 22734 TeuilbEN: 34007, b dorter: 11000 Thaitor [EX]: 19 Hans T & Filliee Type: 1 W;";;'
11 Gall (EB)

Taroa
TOTHANY
o3 Gel (FD)

IATOTHL

-\L&“ m!?ﬁ’)‘j
/ P

~ 2R 21D

.
v

T

(©).

0B

137081989 231640

OPAL fruits The OPAL loghook entry for the first Z boson seen at LEP,
recorded late on 13 August 1989. Credit: CERN



Event Pictures

‘-“r"é’i' DELFHI Interactive Analysis -

Run: 26154 =7

Evt: 2938

Contrs ol scrase 0O, DL, D.OME | || T T 1

Phys. Rep. 427 (2006) 257



Event Pictures (2)

. 19/ 5591
EVEMT MR- - - B&0 ’ 10 33,20

Phys. Rep. 427 (2006) 257



Event Pictures (3)

Run 42725, EVENT 11018
9-APR-19%28 01:30
Source: Run Data Pol: L

Ll L .../._,z / / / / i,

e /#/ LA 1 | 1 | 1

Trigger: Energy CI{ Hadron
Beam Crossing 1016282084
£
I 7
Y
—
/ﬁﬁ-F
- A -'
_.——'. P i ."
s

Phys. Rep. 427 (2006) 257
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The Measurement Task

Precision-measurement of a resonance shape

— energy-dependent cross-section measurement
for different final states f

o N(E) — N (V)
> V8 = ) TL)

T =
5 |
240 o
0 o radlatlv_e
l corrections

30 |

20 |
luminosity,
accepance .
& efficiency 10]

0 !

precision
of machine
energy




Measurement example : Identification of final states

Select subset of recorded data:

® Enrich certain classes of events (“signal events”)

B Suppress background = non-signal events with the same signature as

signal events ALEPH
e

Examples of selection criteria:

® Analysis objects: cut on kinematic
properties (e.g. momenta and angles
of jets and leptons) or object ID
(e.g. ECAL shower shape)

® Events: count number of candidates
for certain particle types (leptons, jets),
energy sums, missing energy

B Often combined in multivariate
methods (BDT, neural network, ...)




Acceptance and Efficiency

Nobs . kag
©° [ Ldt-e
In master equation for o: &€ = acceptance x detection efficiency

B Often determined using Monte Carlo simulation: number of selected MC
events divided by total number of MC events generated

Acceptance: fraction of signal/background events that could be
detected in principle (— process dependent)

B Geometric acceptance: solid-angle coverage of detector

B Detection threshold: e.g. momentum interval in which detector and trigger
are sensitive (note: detection turn-on curve # step function)

Detection efficiency: fraction of signal events inside the detector

acceptance that have actually been reconstructed
(— process dependent)

B Sources of inefficiency: e.g. dead-time, defective detector modules



Luminosity

obs _ pA/bkg
_Nobs N

O‘ =
The integraded luminosity JLdt-e
could in principle be taken from parameters of the accelerator
(see lecture 6, slide 30). However, this is by far not precise enough.

Instead, a theoretically well-known referece reaction is used, the
forward-scattering of electrons under very small angles, the

“Bhabha” process ete- — ete-
/ L = NBhabha/0Bhabha

s Scattered e* and e - at angles between ~25 and ~60 mrad
s special forward calorimeters with a precisely defined acceptance

s systematic uncertainties match or are even smaller than the
theoretical precision on oBhabha of 5.4 x 10-4

» NBhaba must, of course, be corrected for backgroud and acceptance:
NBhabha = ( Nobs - Nbkg )/ (a-€)



Energy Scale

Measurement of a resonance shape requires precise knowledge of
the centre-of-mass energy

An essential ingredient: The LEP energy calibration

magnetic field along the particle path: Ebeam
several methods available:

s measruement of B-field:

- flux loop in reference magnet o o
- Nuclear Magnetic Resonance devices near ring dipoles ~ Principle of resonant depolarisation

s most precise method: ,—*f——

- determine spin precession frequency by resonant o g
depolarisation of transversely polarised beam
& tracking of energy changes between calibrations — B~

Method takes into account the Earth’s magnetic field,

quadrupole contributions for non-central beam orbits, _ _ _
remnant magnetic fields differences between calibration

and energy model
T

Beam energy is proporional to the integraged /
Bdl

; 10 :\ T T T | \+I T T T | T T T T
v - 1995 E
= Sk 5 e
3 0T e e A R 5
g 5 - ' E
™ n N m 710 : | | | | | | 1 | | | | | | 1 ‘ 1 | | 1 | 1 | | | | 1 L]
absolute precision: *1.7 MeV 210 220 230 240 250 260 270 280

relative precision: *1.2 MeV Time [days ]




Literature on Z-Pole results

s Results of the LEP Electroweak Working Group on Physics at the Z-pole

B Web page: http://lepewwg.web.cern.ch/LEPEWWG/

W Comprehensive journal publication: ALEPH, DELPHI, L3, OPAL, SLD:
Precision Electroweak Measurements on the Z Resonance,
Phys. Rep. 427 (2006) 257

s CERN Couirier, LEP’s electroweak leap
https://cerncourier.com/a/leps-electroweak-leap/

s Lecture W, Z and Higgs boson physics, summer semester


https://cerncourier.com/a/leps-electroweak-leap/
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