

Vorlesung 15: **Teilchenphysik I (Particle Physics I)**

Tests of the Electroweak Theory

Günter Quast

Fakultät für Physik Institut für Experimentelle Kernphysik

WS20/21

- 1. History
- 2. Basics principles
- 3. Detectors and Accelerators
- 4. Theoretical Foundations
 - 1. Relativistic Quantum Mechanics
 - 2. Quantum Field Theory and symmetries
 - 3. Elctroweak Symmetry and Higgs Mechanism
- 5. QCD and Jets
- 6. Analysis Chain
- 7. Flavour Physics
 - 1. Quark mixing and CKM Matrix
 - 2. Meson-Antimeson Mixing
 - 3. CP Violation
- 8. Tests of Electroweak Theory
 - 1. Discoveries
 - 2. Precision Physics with Z bosons
 - 3. W Boson and electroweak fit

Overview

During 1960s and early 1970s: electroweak theory proposed theoretically

- Formulation: S. Glashow (1961), Brout-Englert-Higgs-Mechanism as important ingredient (P. Higgs et. al. 1964), S. Weinberg, 1967)
- established as a renormalizable theory: G. 't Hooft, M. Veltman (1971)

Since then: Electroweak Theory established experimentally Questions:

- Do neutral currents exist ?
- Do massive gauge bosons W and Z exist ?
- Are all coupling strengths as predicted ?
- Does the Higgs boson exist ?

This part of the lecture:

overview of first steps towards establishing the Electrowek Theory experimentally

Search for Neutral Currents

Neutral Currents: mediated by neutral exchange boson, coupling fermion-gntifermion pairs to fermion-antiferminon pairs, like electromagnetic interactions mediated by photons

Electroweak interactions of charged particles at low energeries are dominated by electromagnetic processes

 \rightarrow impossible to observe neutral currents.

 \rightarrow

The way out: scattering experiments with neutrinos

CERN neutrino beam (since 1970):

- Protons from CERN PS on target \rightarrow muon neutrinos, e.g. from $\pi^+ \rightarrow \mu^+ \nu_{\mu}$
- Detection: **bubble chamber** experiment Gargamelle

Bubble Chamber Gargamelle

One of the largest bubble Chambers ever built

- a cylinder 4.8 m long, 1,9 m diameter, filled with 12'000 liters of liquid Freon (CF₃Br)
- operated close to boiling point
 - \rightarrow ionisation of charged particles leads to gas bubbles along the track
- events registered on photorgraphic film
- digitised by humans using an early version of a computer mouse

Discovery of Neutral Currents

t-channel reaction of a muon-neutrino with electrons or nuclei without a muon in final state

- Neutrinos interact with electrons and atomic nuclei
- Sign of charged-current interaction: **muon** in final state \rightarrow **long track**
- Sign of neutral-current interaction: scattered electron → electromagnetic shower (bremsstrahlung and e⁺e⁻ pair production)

A Neutral-Current Neutrino-Electron interaction

W and Z Bosons

Requirements to produce real W and Z bosons at accelerators:

- Center-of-mass energy of fermions in initial state around expected boson mass (approx. 100 GeV)
- **Fixed-target** setup: $\sqrt{s} = \sqrt{2m_pE} \rightarrow 5000$ GeV beam energy \rightarrow unrealistic
- Electron-positron collider: $\sqrt{s} = E_1 + E_2 \rightarrow 50$ GeV beam energy → technically feasible only from the 1990s, only Z production

Proton-antiproton collider: production of W and Z bosons by annihilation of valence quark in proton and valence antiquark in antiproton → ok Momentum fractions of colliding valence (anti)quarks x1 ≈ x2 ≈ 0.2 → estimated center-of-mass energy:

$$\sqrt{\hat{s}} \simeq \sqrt{x_1 x_2 s} = 100 \,\mathrm{GeV} \rightarrow \sqrt{s} = 500 \,\mathrm{GeV}$$

SppS -The CERN Super Proton Antiproton Synchrotron

- SPS (Super Proton Synchrotron): new CERN syncrotron (from 1976)
 6.9 km circumference, 400 GeV protons
- Idea (C. Rubbia, 1976): upgrade SPS to a proton-antiproton collider → SppS
- SppS center-of-mass energy: initially 540 GeV, later upgraded to 630 GeV

Challenges for antiproton beam:

- Antiproton production: proton beam on target: approx. one antiproton for each 10⁹ final state parties
- Problem: very large antiproton emittance → reduction without violating Liouville's theorem
- Idea: stochastic cooling with beam pick-up and kicker (S. van der Meer, 1968)

1984: S. van der Meer and C. Rubbia

SppS and the Detectors UA1 and UA2

Further Challenges:

- Protons and antiprotons share the same beam pipe
- Detectors: hermetic 4π detector for the first time at hadron colliders

UA1 and UA2 experiments ("underground area"), data taking from 1981

UA2 Experiment

Discovery of the W Boson

Analysis strategy:

■ Starting point: charged leptons → clean detector signature (approach still used at hadron colliders today)

Neutrino detection: missing transverse momentum (MET) MET = Missing E_T: is determined from sum of transverse momenta of all particles in detector → hermeticity is crucial !

- Two-body decay W → ℓν: lepton and neutrino (MET) emitted back to back in W-boson rest frame
- Background: QCD jet production → no preferred relative directions of lepton and MET

Discovery of the Z Boson

Process:
$$p\bar{p} \rightarrow Z \rightarrow \ell^+ \ell^- (\ell = e, \mu)$$

 \bar{f}
 f
 f
 f
 ℓ^+
 ℓ^-

Analysis strategy:

- Invariant mass of the lepton pair: $m_{Z}^{2} = m_{\ell^{+}\ell^{-}}^{2} = \left[\begin{pmatrix} E_{\ell^{+}} \\ \mathbf{p}_{\ell^{+}} \end{pmatrix} + \begin{pmatrix} E_{\ell^{-}} \\ \mathbf{p}_{\ell^{-}} \end{pmatrix} \right]^{2}$ $= m_{\ell^{+}}^{2} + m_{\ell^{-}}^{2} + 2 \left(E_{\ell^{+}} E_{\ell^{-}} - |\mathbf{p}_{\ell^{+}}| |\mathbf{p}_{\ell^{-}}| \cos \phi_{\ell^{+}\ell^{-}} \right)$ $\approx 2 |\mathbf{p}_{\ell^{+}}| |\mathbf{p}_{\ell^{-}}| \left(1 - \cos \phi_{\ell^{+}\ell^{-}} \right)$
- Depends on lepton momenta and opening angle (lepton masses neglected)

UA1 event picture

cds.cern.ch

+

Neutrino - Electron Scattering

Studies of neutral currents with neutrinos revealed the structure of the Z – couplings to neutrinos and electrons

- Z is a mixture of the SU(2)_L and the U(1) gauge boson, given by the weak mixing angle and the fermion charge \rightarrow
- neutrino coupling is purely left-handed, i.e. has equal contributions from vector (coupling in front of γ_μ term) and axial vector coupling (γ₅γ_μ term)
- electron coupling is not purely left-handed, with different vector and axial vector components

Example: CDHS

- CERN-Dortmund-Heidelberg-Saclay (Warsaw) collaboration
- Iron-scintillator sampling calorimeter → hadron calorimeter and spectrometer at the same time
- Calorimeter interleaved with drift chambers

Neutrino - Electron Scattering

(Anti-)Neutrino Beam: NC

Difference between v_e and v_{μ} :

- v_{μ} : only **Z-Boson exchange** (NC)
- v_e and e: members of the same isospin doublet: W-boson exchange (CC) possible

Couplings:

- Neutrinos: **pure** V-A **coupling** to W and Z boson ($g_V = g_A = 1$)
- Electrons: g_V , $g_A \neq 1$

Neutrino - Electron Scattering

Total cross sections expressed in terms of vector (γ_{μ}) and axial vector ($\gamma_{5}\gamma_{\mu}$) couplings:

These are the equations of ellipses in the $g_V - g_A$ plane

- 1. History
- 2. Basics principles
- 3. Detectors and Accelerators
- 4. Theoretical Foundations
 - 1. Relativistic Quantum Mechanics
 - 2. Quantum Field Theory and symmetries
 - 3. Elctroweak Symmetry and Higgs Mechanism
- 5. QCD and Jets
- 6. Analysis Chain
- 7. Flavour Physics
 - 1. Quark mixing and CKM Matrix
 - 2. Meson-Antimeson Mixing
 - 3. CP Violation
- 8. Tests of Electroweak Theory
 - 1. Discoveries
 - 2. Precision Physics with Z bosons
 - 3. W Boson and electroweak fit

Electroweak precision tests at "Z Factories"

Studies of the Z-boson couplings to fermions test the heart of the EW interaction, the **mixing of the neutral Bosons of the U(1) and the SU(2)** symmetries

$$\begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_W & -\sin \theta_W \\ \sin \theta_W & \cos \theta_W \end{pmatrix} \begin{pmatrix} W_{\mu}^3 \\ B_{\mu} \end{pmatrix}$$

$$\sin \theta_W = \frac{g'}{\sqrt{g^2 + g'^2}} \quad \cos \theta_W = \frac{g}{\sqrt{g^2 + g'^2}}$$

The matrix element M of $Z \rightarrow f\bar{f}$ processes (in leading order)

Cross section: $\sigma(e^+e^- \rightarrow f\bar{f}) = \sigma_{\gamma^*} + \sigma_{\gamma^*/Z} + \sigma_Z$

• $\sqrt{s} \ll m_Z$: **photon exchange** dominates \rightarrow only QED effects

■ $\sqrt{s} \simeq m_Z$: **Z boson exchange** dominates, photon exchange and interference term negligible

Weak mixing angle sin² θw and Z-boson couplings

Electroweak theory in lowest order:

weak mixing angle $\sin^2 \theta W$ give by

- ratio of left- and right-handed fermion-couplings or
- ratio of squared W and Z boson masses

$$\sin^2 \Theta_{\rm W} = \frac{I_3^{\rm f}}{2Q^{\rm f}} \left(1 - \frac{g_v^{\rm f}}{g_a^{\rm f}} \right) = 1 - \frac{m_{\rm W}^2}{m_{\rm Z}^2}$$

 $g_a^{\rm f} = I_3^{\rm f}$ axial vector coupling (factor of $\gamma_5 \gamma_{\mu}$ term in \mathcal{L})

 $g_v^{
m f} = I_3^{
m f} - 2 \,\, Q^{
m f} \sin^2 \Theta_{
m W}$ vector coupling (factor of γ_μ term in m L)

or, equivalently:

 $g_l^{\mathrm{f}} = \frac{1}{2}(g_v^{\mathrm{f}} + g_a^{\mathrm{f}})$ left-handed coupling

 $g_r^{\mathrm{f}} = rac{1}{2}(g_v^{\mathrm{f}} - g_a^{\mathrm{f}})$ right-handed coupling

In higher orders, couplings receive "radiative corrections" depending on all parameters of the theory, including so far unobserved new particles (\rightarrow later)

The e⁺e⁻ \rightarrow ff cross section (lowest order)

$$\frac{2s}{\pi} \frac{1}{N_{c}^{f}} \frac{d\sigma_{ew}}{d\cos\theta} (e^{+}e^{-} \rightarrow f\bar{f}) =$$

$$\frac{1}{\sqrt{2}} \frac{|\alpha|^{2} (1 + \cos^{2}\theta)}{\gamma}$$

$$\frac{|\alpha|^{2} (1 + \cos^{2}\theta)}{\gamma}$$

$$\frac{-8\alpha \Re\{\chi(s)\} \left[g_{Ve}g_{Vf}(1 + \cos^{2}\theta) + 2g_{Ae}g_{Af}\cos\theta\right]}{\gamma - Z \text{ interference}}$$

$$\frac{-8\alpha \Re\{\chi(s)\}^{2} \left[(g_{Ve}^{2} + g_{Ae}^{2})(g_{Vf}^{2} + g_{Af}^{2})(1 + \cos^{2}\theta) + 8g_{Ve}g_{Ae}g_{Vf}g_{Af}\cos\theta\right]}{Z}$$
with $\chi(s) = \frac{m_{Z}^{2}}{8\pi\sqrt{2}} \frac{s}{s - m_{Z}^{2} + i\Gamma_{Z}m_{Z}}}{Z}$

$$\Gamma_{Z}: Z \text{ boson total width}$$
Breit-Wigner Propagator

Measurements of $e^+e^- \rightarrow ff$

Cross Section at Z resonance almost a factor ~1000 higher than that of QED (photon exchange) processes

Experimental Measurements

The task: Measurement of the

differential cross section at different energies around the Z peak

- terms proportional to $\cos^2 \theta$ contribute to total cross section

$$\sigma_{\rm tot} = \frac{N_{cand} - N_{bkg}}{\epsilon \cdot \int L}$$

- terms proportional to cos θ contribute to forward-backward asymmetry

- \$\sigma_{tot}(\sigma_s)\$ and \$A_{FB}(\sigma_s)\$ are the basic measurements at e^+e^- colliders
 \$\phi_{tot}(\sigma_s)\$ and \$A_{FB}(\sigma_s)\$ are the basic measurements at e^+e^- colliders
 \$\phi_{tot}(\sigma_s)\$ and \$A_{FB}(\sigma_s)\$ are the basic measurements at e^+e^- colliders
 \$\phi_{tot}(\sigma_s)\$ and \$A_{FB}(\sigma_s)\$ are the basic measurements at e^+e^- colliders
 \$\phi_{tot}(\sigma_s)\$ and \$A_{FB}(\sigma_s)\$ are the basic measurements at e^+e^- colliders
- in final states with tau leptons, polarisation can be measrued as well

Early measurement of Forward-Backward asymmetry

with this knowledge, can go back in time:

DESY, Hamburg, e⁺e⁻ storage ring PETRA, 1981

Combined results of the DESY Experiments Jade, MARK J, Pluto and TASSO: $A_{FB} = (-7.7 \pm 2.4)\% \rightarrow \text{indirect evidence of the Z-Resonance}$ before the discovery of the Z Boson

Z-Factories: the Large Electron Positron Collider LEP

L3 detector

Example: Opal Experiment

Z-Factories: The Stanford Lineaer Collider

Z-Factories: Overview

e+*e*− collider with $\sqrt{s} = m_Z \approx 91$ GeV ("at the Z pole") Experiments: hermetic 4π detectors

	LEP (1989-2000)	SLC (1989-1998)
Data-Taking Periods	LEP 1 (1989-1995): √s ≈ m _Z ≈ 91 GeV	√s ≈ <i>m</i> z ≈ 91 GeV
	LEP 2 (1996-2000): √s = 160–207 GeV	Polarized electrons since 1992
Experiments	ALEPH, OPAL, DELPHI, L3	Mark II (until 1991), SLD (1992-1998)
Z Boson Decays Recorded	17,000,000	600,000 (polarized)

The first Event at LEP

OPAL fruits The OPAL logbook entry for the first Z boson seen at LEP, recorded late on 13 August 1989. Credit: CERN

Event Pictures

Phys. Rep. 427 (2006) 257

Event Pictures (2)

Phys. Rep. 427 (2006) 257

Event Pictures (3)

Phys. Rep. 427 (2006) 257

The Measurement Task

Precision-measurement of a resonance shape

→ energy-dependent cross-section measurement for different final states *f*

Measurement example : Identification of final states

Select subset of recorded data:

- Enrich certain classes of events ("signal events")
- Suppress background = non-signal events with the same signature as signal events
 ALEPH
- Examples of selection criteria:
- Analysis objects: cut on kinematic properties (e.g. momenta and angles of jets and leptons) or object ID (e.g. ECAL shower shape)
- Events: count number of candidates for certain particle types (leptons, jets), energy sums, missing energy
- Often combined in multivariate methods (BDT, neural network, ...)

Acceptance and Efficiency

 $\sigma = \frac{N^{obs} - N^{bkg}}{\int \int dt \cdot \epsilon}$

In master equation for σ : ε = acceptance × detection efficiency

Often determined using Monte Carlo simulation: number of selected MC events divided by total number of MC events generated

$$\varepsilon = \frac{N_{\text{gen}}^{\text{sel}}}{N_{\text{gen}}}$$

Acceptance: fraction of signal/background events that could be detected in principle (→ process dependent)

- **Geometric** acceptance: solid-angle coverage of detector
- Detection threshold: e.g. momentum interval in which detector and trigger are sensitive (note: detection turn-on curve ≠ step function)

Detection efficiency: fraction of signal events inside the detector acceptance that **have actually been reconstructed** (→ process dependent)

Sources of inefficiency: e.g. dead-time, defective detector modules

Luminosity

 $\sigma = \frac{N^{\text{obs}} - N^{\text{bkg}}}{\int \mathcal{L} \, \mathrm{d}t \cdot \varepsilon}$

The integraded luminosity

could in principle be taken from parameters of the accelerator (see lecture 6, slide 30). However, this is by far not precise enough.

Instead, a theoretically well-known referece reaction is used, the forward-scattering of electrons under very small angles, the **"Bhabha" process** $e^+e^- \rightarrow e^+e^-$

$$\int \mathcal{L} = N_{\rm Bhabha} / \sigma_{\rm Bhabha}$$

- Scattered e⁺ and e⁻ at angles between ~25 and ~60 mrad
- special forward calorimeters with a precisely defined acceptance
- systematic uncertainties match or are even smaller than the theoretical precision on σ_{Bhabha} of 5.4 x 10⁻⁴
- NBhaba must, of course, be corrected for backgroud and acceptance:
 NBhabha = (Nobs Nbkg) / (α·ε)

Energy Scale

Measurement of a resonance shape requires precise knowledge of the **centre-of-mass energy**

10

5

0

-5

-10 -210

1995

↓¢

220

230

240

Residual [MeV]

An essential ingredient: The LEP energy calibration

Beam energy is proportional to the integraged magnetic field along the particle path: $E_{\text{beam}} \propto \int B dl$ several methods available:

- measruement of B-field:
 - flux loop in reference magnet
 - Nuclear Magnetic Resonance devices near ring dipoles
- most precise method:

- determine **spin precession** frequency by **resonant depolarisation** of transversely polarised beam

& tracking of energy changes between calibrations Method takes into account the Earth's magnetic field, quadrupole contributions for non-central beam orbits, remnant magnetic fields

250

260

absolute precision: ±1.7 MeV relative precision: ±1.2 MeV

280

270

Literature on Z-Pole results

Results of the LEP Electroweak Working Group on Physics at the Z-pole

Web page: <u>http://lepewwg.web.cern.ch/LEPEWWG/</u>

- Comprehensive journal publication: ALEPH, DELPHI, L3, OPAL, SLD: <u>Precision Electroweak Measurements on the Z Resonance</u>, Phys. Rep. 427 (2006) 257
- CERN Courier, LEP's electroweak leap https://cerncourier.com/a/leps-electroweak-leap/
- Lecture W, Z and Higgs boson physics, summer semester