

High-p_T **Physics**

Fakultät für Physik K. Rabbertz (ETP)

Klaus Rabbertz

Karlsruhe, 02.02.2021

Teilchenphysik I

- The new world average from PDG on $\alpha_s(M_z^2)$ is 0.1179 ± 0.0010
- Elastic scattering of electrons on protons:
 - "Simplest" elastic approximation: Rutherford scattering
 - Has one independent variable, e.g. θ or Q²
 - Mott scattering includes energy transfer from electron to nucleon and spin-1/2
 - Rosenbluth formula introduces internal structure of the proton; electric and magnetic form factors
- Inelastic scattering requires two independent variables, e.g. scaling variable x and momentum transfer squared Q²
- Can be converted to other combination with inelasticity y and hadron final state mass squared W²
- Lorentz-invariant description involves structure functions $F_1(x,Q^2)$ and $F_2(x,Q^2)$ $F_1(x) = \frac{F_2(x)}{2\pi}$
- Depend mostly on x, not Q²: Spin-1/2 partons lead to Callan-Gross relation Klaus Rabbertz

 Klaus Rabbertz
 Karlsruhe, 02.02.2021
 Teilchenphysik I
 2

Rosenbluth formula can be rewritten to include inelastic scattering.

Most general Lorentz-invariant and parity conserving expression:

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}x \mathrm{d}Q^2} = \frac{4\pi \alpha^2}{Q^4} \left[(1-y) \frac{F_2(x, Q^2)}{x} + y^2 F_1(x, Q^2) \right] \qquad \qquad Q^2 \gg M_p^2 y^2$$

 $F_1(x,Q^2)$ and $F_2(x,Q^2)$ are structure functions incorporating the form factors (and kinematic ones, τ), but cannot be related to Fourier transforms any more since dependent on x.

Still, $F_1(x,Q^2)$ is of purely magnetic origin, while $F_2(x,Q^2)$ originates from both, electric and magnetic effects.

What do they mean?

Klaus Rabbertz

- J.D. Bjorken, R.P. Feynman 1969:
- Infinite momentum frame
 - incoherent superposition of elastic scatterings with point-like "partons"
 - scale invariant, i.e. independent of resolution ~ q², no natural length scale

Proton structure

Example of generic functional form of proton structure:

$$xf(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2})$$
Normalisation Behaviour for Behaviour for $x \to 0$ $x \to 1$ Middle region largest variability
Klaus Rabbertz Karlsruhe. 02.02.2021 Teilchenphysik l

Klaus Rabbertz

Correlation cross section - PDF ETE

Example: Measurement of high pT jets and gluon content of the proton:

- Gluon distribution at high x (> 0.1)
- Quark distribution at high x (> 0.3)

Hadron Colliders

Klaus Rabbertz

"Broadband beams" of various parton types with various energies \rightarrow QCD parton collider!

Challenge: Reliable calculations of observables

Klaus Rabbertz

$pp \to l^+l^- + X$

- Hadro-production of lepton pairs
 - at large center-of-mass energies
 - with large invariant mass
 - color-neutral final state (except proton remnants) → no hadronisation

Not a Feynman diagram

$pp \to l^+l^- + X$

- Hadro-production of lepton pairs
 - at large center-of-mass energies
 - with large invariant mass
 - color-neutral final state (except proton remnants) → no hadronisation

Partonic Feynman diagram \rightarrow calculable in perturbative QCD

$pp \to l^+l^- + X$

- Hadro-production of lepton pairs
 - at large center-of-mass energies
 - with large invariant mass
 - color-neutral final state (except proton remnants) → no hadronisation

Factorisation theorem of QCD:

- Process can be calculated by factorising "hard" and "soft" components
 - Calculate hard partonic subprocess
 - Weight cross section with probability to find partons with momenta x₁, x₂ inside hadrons
 - Integrate over all possible parton momenta
 - Sum over all possible parton flavors

$pp \to l^+l^- + X$

- Factorisation theorem of QCD:
 - Process can be calculated by factorising "hard" and "soft" components
 - Calculate hard partonic subprocess
 - Weight cross section with probability to find partons with momenta x₁, x₂ inside hadrons
 - Integrate over all possible parton momenta
 - Sum over all possible parton flavors

$$\sigma_{\rm DY} = \sum_{i,j} \int \mathrm{d}x_i \mathrm{d}x_j f_i(x_i) f_j(x_j) \cdot \hat{\sigma}(q_i q_j \to l^+ l^-)$$

PDFs $f_i(x_i)$ are universal; can be measured independently e.g. in DIS!

Klaus Rabbertz

Karlsruhe, 02.02.2021

Teilchenphysik I

Factorisation scale

Factorisation scale

- Attribution ambiguous:
 - Leads to soft and/or collinear divergences (long-distance effects!)
 - Solution: Introduce a new scale to separate short- and long-distance effects
 - Factorisation scale μ_f
 - All soft and collinear divergences (long-distance effects) are absorbed into the PDFs determined from experimental measurements

 $f_i(x_i) \to f_i(x_i, \mu_f^2)$

Klaus Rabbertz

Hadron-hadron cross sections ETP

Factorisation valid also for more general final states, e.g. jet production!

Event rates at the LHC

Jets at the LHC

All inclusive

Large transverse momenta

Klaus Rabbertz

Karlsruhe, 02.02.2021

Inclusive jet cross section

 $\propto \alpha_s^2$

 $d^2\sigma$

Overall agreement with predictions of QCD at NLO over many orders of magnitude in cross section and even beyond 2 TeV in jet p_T and for rapidities |y| up to 3 ~ 5 at \sqrt{s} = 2.76, 7, 8, and 13 TeV.

Data vs. NLO pQCD x non-pert. x EW corrections

Example: Strong coupling constant

W and Z bosons

Standard Candles

- Hadro-production of leptons pairs from W, Z decays
 - large invariant mass
 - high p_T of leptons, but not necessarily of W, Z
 - high p_T of W, Z requires balancing object \rightarrow most frequently jets
 - Very interesting to study: W, Z p_τ distribution
 - Also: di- and triple-vector boson production
- Further interest:
 - Masses of W and Z bosons: Important SM parameters
 - W and Z boson couplings in production and decay
 - E.g. asymmetries in production

Much more on W, Z analyses in:

Particle physics II – W, Z and Higgs physics at the LHC

M. Schröder, R. Wolf

W and Z at the LHC

Proton-proton collisions, all p_{T} :

- Production of W bosons vs. rapidity y
 - symmetric around zero for W⁺, W⁻
 - BUT: W⁺ different from W⁻
 - Proton content different for u and d!

Theory known up to NNLO, 1^{st} order independent of α_{s}

Z+jet production

Z+jet production

Z+jet production

- Theory for forward-backward topology
 - starts being precise only at NNLO
- **Z** p_τ distribution:
 - Z p_T balanced by jets at high p_T
 - At small p_T multiple soft gluon radiation must be considered, fixed-order pQCD insufficient
 - Resummation of leading terms to all orders
 - Parton showers
 - Description by MC generators with showers and/or resummation ok

Heavy quarks

Relevant CMS measurements:

PLB 728, 496 (2013), JHEP 11, 067 (2012) [Erratum: PLB 738, 526 (2014)], CMS-TOP-17-001, arXiv:1812.10505 CMS-PAS-TOP-18-004.

Klaus Rabbertz

Karlsruhe, 02.02.2021

Teilchenphysik I

30

ttbar at the LHC

Solution Standard Model

- top like a normal quark q
 - Spin 1/2
 - Couples to color
 - Produced "strongly", predominantly via gluon-gluon process at the LHC
 - Decays "weakly" to ~100% via t → Wb
 - No flavor-changing neutral currents

Solution of the Standard Model

top not a normal quark

Heaviest known elementary particle
 m_{top} = ~173 GeV

Klaus Rabbertz

b

С

Solution of the Standard Model

Klaus Rabbertz

Solution of the Standard Model

top, W, and Higgs mass

- top mass connected to W and Higgs mass via loop corrections
- Production as single-top can provide input to PDFs
- Background to many searches for new physics

Much more on top analyses in:

Particle physics II – Top quark and jet physics at the LHC

KR + A. Meyer

Klaus Rabbertz

Summary

- Collisions including hadrons such as protons in the initial state require knowledge of the hadron's internal structure
- Protons are described by parton distribution functions (PDFs) describing the probability to find a parton i with momentum fraction x at a scale µ_f
 - The x dependence cannot be derived in perturbative QCD, but is universally usable in scattering processes once determined from data
 - **The scale dependence is calculable in perturbative QCD, TP II Top & Jets**
- Through the factorisation theorem of QCD cross sections involving hadrons can be derived separating soft/collinear effects into PDFs and high-pT parton scatters in partonic matrix elements
- Examples for high-pT processes at the LHC are

 - **➡** W production \rightarrow asymmetry in W⁺ W⁻ rapidity distribution

 - ***** ttbar production \rightarrow top quark mass, lifetime, ...

