

Beyond the Standard Model (SM) of Particle Physics

Fakultät für Physik K. Rabbertz (ETP)

Klaus Rabbertz

Karlsruhe, 16.02.2021

Teilchenphysik I

The SM works (too) well ...

Measurements in agreement with predictions

Including the Higgs the SM is self-consistent

Klaus Rabbertz

Karlsruhe, 16.02.2021

Teilchenphysik I

No need for

new physics

Why do we need new physics?

CERN, July 2012 Centre piece of the Standard Model cake has been found: the Higgs boson!

CERN main auditorium

We know everything!

Why do we need new physics?

CERN

Universe

main auditorium

CERN, July 2012 Centre piece of the Standard Model cake has been found: the Higgs boson!

We know everything!

ESA 2015 Only 4.9 % ordinary matter in the universe!

cosmic microwave background We still know nothing!

Klaus Rabbertz

Karlsruhe, 16.02.2021

Teilchenphysik |

ESA/Planck 2015

68.3%

Symmetry Magazine

S

Vu

b

 V_{e}

C

g

Z

V_T

Dark Matter

Dark Energy

Ordinary Matter 4.9%

C

μ

W

e

U

26.8%

Let's collect some arguments ETE

Klaus Rabbertz

- Matter-antimatter-asymmetry
- Neutrino masses nonzero, but unknown
- Complicated gauge symmetry groups; something simpler should exist
- Large number of SM parameters
- Only one Higgs boson; why not more?
- Why four forces? No gravity in SM.
- Unification of electroweak and strong forces
- No CP violation in strong interaction although possible
- P, CP, and T symmetries violated; why not CPT?
- Cosmology: Can matter distribution in universe be explained?

Previously collected arguments ETP

New physics. - DOStillationen > m, 70 - Dork Enorgy? - Dark Matler? 4 Vakumeenergie Quantergravitation - Gravitation? - Materie Autimaterie Acymentic - Parameter des SM - Erchgrappen? - Dickrepanz bei Messnigen. /Hubble-Konstante! CMB -4 Rotve victure bung - Starkes (P Problem (- Annahme Kosnoprice)

Klaus Rabbertz

- Rotational speed of stars in galaxies
 - Too little visible matter
 - Dark Matter

- Cosmic microwave background
 - Accelerated expansion of universe
 - SM of Cosmology: ΛCDM
 - Dark Energy

Gravitational waves

Nobel prize 2017

But gravity is not included in the Standard Model of Particle Physics

- SM: Gauge quantum field theory in flat 4d spacetime
- GR: Nonquantised geometric field theory
- No quantum field theory of gravity so far ...

Klaus Rabbertz

Matter-antimatter asymmetry E

- Baryon asymmtry in the universe
 - Requires CP violation (Sakharov 1967)
 - Only known source in SM, CKM matrix, not sufficient!

 v_2

 ν_{τ} ν_{1}

 m_{2}^{2}

 $m_1^2_{-}$

0

atmospheric

~2×10-3eV2

solar~7×10-5eV2

atmospheric

~2×10-3 eV2

Neutrinos in SM of particle physics are massless

 ν_{μ}

- **Observation of neutrino oscillations well estabishled**
 - Neutrinos must have some very small masses!
 - Analog to CKM matrix exists: PMNS

 ν_e

Is there CP violation in PMNS?

 v_e

 $\sin^2\theta_{12}$

Are neutrinos their own antiparticles (Majorana instead of Dirac)?

 $\nu_{ au}$

 ν_{μ}

Muon anomalous magnetic moment

Extremely precise prediction from theory (at level of 5 10⁻⁷)

- In disagreement with measurements!
 - **Corrections (loops) sensitive to new physics (particles)**

 $a_{\mu} = \frac{g_{\mu} - 2}{2} \neq 0$

Large number of parameters

"Standard Model"

18

- Nine fermion masses
- Three coupling constants
- Higgs mass and vacuum expectation value
- Three CKM mixing angles + one phase
- Including neutrino masses
 - Three more fermion masses
 - Three PMNS angles + one phase 25
- Including strong CP phase parameter
 - No CP violation in QCD
- Two more for Majorana neutrinos?

Attribution of most parameters

Standard Model of Elementary Particles

- Gauge interactions (couplings): 3
- Higgs sector (masses): 14 !
- Flavour sector (CP): 8 !

Karlsruhe, 16.02.2021

26

 $heta rac{g_s^2}{22\pi^2} \mathcal{G}^A_{\mu
u} ilde{\mathcal{G}}^{\mu
u}_A$

- Complicated gauge structure of three interactions $SU(3)_C \times SU(2)_L \times U(1)_Y$
 - Reason for gauge groups?
 - Is there some unification to one elemental force?
- **CP** violating term in QCD Lagrangian \rightarrow 0
 - Why so small?
- Minimal Higgs sector added "ad hoc"
 - Twelve hugely different Yukawa couplings to give the observed fermion masses
- "Conspiracy" between electroweak and strong parameters
 - Atoms are electrically neutral, electron and quark charges compensate
 - No chiral anomaly, chiral current is conserved $Q_e + N_C \cdot (Q_u + Q_d) = 0$
- Hierarchy problem

Klaus Rabbertz

- SM as effective theory valid from $~\Lambda_{ewk}pprox 10^2 GeV$ up to some scale
- Gravity not included so could be $\Lambda_{\rm Planck} \approx 10^{19} {\rm GeV}$
- New physics needed, but nothing for 17 orders of magnitude?

Summary of open points

- Evidence from cosmology
 - No particle candidate for dark matter or energy
 - Gravity not included in the "Standard Model of Particle Physics"
 - Matter-antimatter asymmetry not explained
- Evidence from lab experiments
 - Neutrino oscillations require neutrino masses (not in SM)
 - Deviations in precision experiments (g-2)
- Theoretical deficits
 - Large number of free parameters are there any relations?
 - Complicated gauge structure is there a simpler more unified one?
 - Is there enough CP violation?
 - Ad hoc Higgs sector: What explains the hugely different particle masses?
 - Relation between QCD and EWK parameters is there a deeper reason?
 - Is there nothing between the electroweak and Planck (gravity) scale?

Wishlist to BSM physics

- **Containment:** SM as low-energy approximation
- **Predictive power: Explains new phenomena**
- Simplicity: Simpler structure
- **Deductibility:** Less ad hoc assumptions and/or free parameters
- **Completeness:** Inherent reasons for nonexistence of otherwise possible effects

Teilchenphysik |

New symmetries

- Grand Unified Theories (GUT): Unification of SM gauge interactions into one
- Supersymmetry (SUSY): Symmetry between fermions and bosons
- Further gauge groups, e.g. U(1) or new right-handed gauge bosons
- New substructures
 - Compositeness: Quarks and leptons not elementary
 - Technicolor: Higgs (and W/Z) bosons not elementary
 - Bound states of massless particles: Mass = binding energy
- New concepts
 - Further spacetime dimensions
 - Strings instead of particles

GUT: Motivation

- Electromagnetic and weak interaction as same force
- Same strength for $Q^2 \gg M_{W,Z}^2$
- Low-energy differences due to boson masses (propagators)

GUT: Historical successes

Klaus Rabbertz

Karlsruhe, 16.02.2021

Teilchenphysik I

19

GUT: Example SU(5)

Karlsruhe, 16.02.2021

- SU(5) simplest group to embed SM:
 - New bosons X with weak isospin and color (leptoquarks)
 - Predicts unification of gauge coupling strengths
 - Running couplings α_{em} , α_{W} , α_{s} almost meet at

 $\Lambda_{\rm GUT}\approx 10^{15}{\rm GeV}\approx \Lambda_{\rm Planck}$

- Hint towards unification with gravity?
- Big desert:
 - No new physics inbetween
 - Unification not exact; something else in addition?
- Predicts:
 - ~ Value of weak mixing angle
 - **No anomaly** \rightarrow neutral atoms
 - No B or L conservation; proton decay
 - Magnetic monopoles Klaus Rabbertz

Supersymmetry SUSY

- Symmetry between fermions and bosons
- Postulate: Lagrangian invariant under supersymmtry transformations
- Original motivation: Extension of Poincare-Group
- First prototype: Wess-Zumino model at Uni Karlsruhe
- Minimal Supersymmetric Standard Model (MSSM)
 - Superpartners to existing particles with spin different by ± ½
 - Other properties identical between normal and SUSY particles
 - Contains dark matter candidates, e.g. neutralinos
 - Unification of coupling strengths
 - Solution of Hierarchy problem in Higgs sector
 - Dynamic generation of electroweak symmetry breaking
 - No superpartners with identical properties (mass) found → must be broken symmetry with SUSY particle masses LARGER

Particle content:

- Spin-½ fermions and spin-0 sfermions
- Spin-1 gauge bosons and spin-½ gauginos
- ✤ More complex Higgs sector required (two Higgs doublets → five Higgs'ses)

Leptons	<u>1</u> 2	$\begin{pmatrix} \nu_{e,L} \\ e_L \end{pmatrix}, e_R$	$\begin{pmatrix} u_{\mu,L} \\ \mu_L \end{pmatrix}, \ \mu_R$	$\begin{pmatrix} \nu_{\tau,L} \\ \tau_L \end{pmatrix}, \ \tau_R$
Sleptons	0	$egin{pmatrix} ilde{ u}_{e,L} \ ilde{e}_L \end{pmatrix}, ilde{e}_R \end{cases}$	$\begin{pmatrix} ilde{ u}_{\mu,L} \\ ilde{\mu}_L \end{pmatrix}, \ ilde{\mu}_R$	$\begin{pmatrix} \tilde{\nu}_{\tau,L} \\ \tilde{\tau}_L \end{pmatrix}, \ \tilde{\tau}_R$
Quarks	<u>1</u> 2	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}$, u_R , d_R	$egin{pmatrix} s_L \ c_L \end{pmatrix}$, s_R , c_R	$\begin{pmatrix} t_L \\ b_L \end{pmatrix}$, t_R , b_R
Squarks	0	$\begin{pmatrix} \tilde{u}_L \\ \tilde{d}_L \end{pmatrix}$, \tilde{u}_R , \tilde{d}_R	$egin{pmatrix} ilde{s}_L \ ilde{c}_L \end{pmatrix}$, $ ilde{s}_R, \ ilde{c}_R$	$\begin{pmatrix} \tilde{t}_L \\ \tilde{b}_L \end{pmatrix} , \tilde{t}_R, \tilde{b}_R \leftrightarrow \tilde{t}_{1,2}, \tilde{b}_{1,2}, \ldots$
Gauge bosons	1	W^{\pm}, Z^0, γ, g		
Gauginos	<u>1</u> 2	$ ilde{w}^{\pm}, ilde{z}^{0}, ilde{\gamma}, ilde{g}$	$\left. \right\} \qquad \tilde{\gamma}, \tilde{Z}^0, \tilde{H}^0_1 \sim \tilde{A}$	$\leftrightarrow \tilde{\chi}^0_{1,2,3,4}; \tilde{W}^{\pm}, \tilde{H}^{\pm} \leftrightarrow \tilde{\chi}^{\pm}_{1,2}$
Higgsinos	$\frac{1}{2}$	$\tilde{H}^0_{1,2},\tilde{H}^\pm$	J	Neutralinos Charginos
Higgs bosons	0	h, H, A, H^{\pm}		

Klaus Rabbertz

MSSM at LHC

Unification of couplings actually works yIdeal scale for superpartners: 1 TeV60→ perfect for discovery at the LHC60Lighest SUSY particle (LSP) candidate40for Cold Dark Matter (CDM)!40→ WIMP searches, also elsewhere20(Weakly Interacting Massive Particles)

SUPERSYMMETRY

Standard particles

Klaus Rabbertz

SUSY particles

Karlsruhe, 16.02.2021

Not the slighest glimpse found of something SUSY at the LHC

- no massive superpartners
- no missing E_T signatures of CDM candidates

Teilchenphysik I

→ No WIMPs found Maybe try ALPs

QCD and C, P, T Invariance

Lorentz-scalar in QED

No effect, since surface term with **QED** fields \rightarrow 0 at ∞

 $-rac{1}{A}\mathcal{F}_{\mu
u}\mathcal{F}^{\mu
u}=rac{1}{2}\left(ec{E}^2-ec{B}^2
ight)$ OK

 $-\frac{1}{\Lambda}\mathcal{F}_{\mu\nu}\tilde{\mathcal{F}}^{\mu\nu} = \left(\vec{E}\cdot\vec{B}\right)$ P, /T

The case of QCD

Dual tensor: $\tilde{\mathcal{F}}^{\mu\nu}$

$$=rac{1}{2}\epsilon^{\mu
u
ho\sigma}\mathcal{F}_{
ho\sigma}$$

If all m_a > 0, possible term of

$$\theta \frac{g_s^2}{32\pi^2} \mathcal{G}^A_{\mu\nu} \tilde{\mathcal{G}}^{\mu\nu}_A$$

should have effect, because of degenerate nonperturbative QCD vacuum with phase $0 \le \theta \le 2\pi$.

Including weak CP violating effects \rightarrow

$$\overline{\theta} \frac{g_s^2}{32\pi^2} \mathcal{G}^A_{\mu\nu} \tilde{\mathcal{G}}^{\mu\nu}_A$$

where
$$0 \leq \overline{ heta} \leq 2\pi$$

NMR measurement with spin-polarised, trapped (t \approx 150s), ultracold neutrons (v < 7 m/s \rightarrow total reflection) B \approx 1 µT, E \approx 10 kV/cm

$$h\nu_{\uparrow\uparrow} = |2\mu_n B + 2d_n E|$$
$$h\nu_{\uparrow\downarrow} = |2\mu_n B - 2d_n E|$$

Measure change in spin precession frequency between E parallel and anti-par.

$$-\delta\nu = 4d_n E/h$$

 $d_n < 2.9 \cdot 10^{-26} ecm$ Best limit $\rightarrow \quad \overline{\theta} < 10^{-10}$

Including weak CP violating effects \rightarrow

 $\overline{\theta} \frac{g_s^2}{32\pi^2} \mathcal{G}^A_{\mu\nu} \tilde{\mathcal{G}}^{\mu\nu}_A$

Seccei-Quinn Mechanism (1977)

Repeat successful recipes → Similar to Brout-Englert-Higgs mechanism!

Postulate global U(1)_{PQ} chiral symmetry, spontaneously broken at scale f_a

- Dynamically generated CP violating term restores QCD CP invariance
- Axions as resulting pseudoscalar bosons (Wilczek, Weinberg, 1978)

Mexican-hat potential \rightarrow minimum at θ = 0

Axion Properties

 $\begin{array}{ll} \mbox{Reinterpretation} & \overline{\theta} \rightarrow \frac{a(x)}{f_a} \rightarrow \mbox{pseudo-scalar axion field} \\ & \rightarrow \mbox{PQ scale, axion decay constant} \\ \mbox{Original PQWW axion suggestion} \\ \mbox{quickly excluded by experiment ...} & f_a \sim \left(\sqrt{2}G_F\right)^{-1/2} \approx 247 \, \mbox{GeV} \end{array}$

Axions effectively couple to gluons

ightarrow axions mix with π^{0} ightarrow properties scale $m_{a}f_{a} \sim m_{\pi}f_{\pi}$ ightarrow 140 MeV \cdot 100 MeV

Peccei, Quinn, PRL 1977, 38, 1440; PRD 1977, 16, 1791; Wilczek, PRL 1978, 40, 279; Weinberg, PRL 1978, 40, 223.

Axion Parameter Space

Axion Properties

 $\begin{array}{ll} \mbox{Reinterpretation} & \overline{\theta} \rightarrow \frac{a(x)}{f_a} \rightarrow \mbox{pseudo-scalar axion field} \\ \hline & \sigma \mbox{PQ scale, axion decay constant} \\ \mbox{Original PQWW axion suggestion} & f_a \sim \left(\sqrt{2}G_F\right)^{-1/2} \approx 247 \, \mbox{GeV} \end{array}$

Two alternatives not in contradiction with experiment: KSVZ (Kim-Shifman-Vainshtein-Zakharov) DFSZ (Dine-Fischler-Srednicki-Zhitnitskii)

 $m_a \lesssim 10 \,\mathrm{meV}$

→ Low Energy Physics! ALPs: axion-like particles:

KSVZ Axion, PRL 1979, 43,103; NPB 1980, 166, 493. DFSZ Axion, SJNP 1980, 31, 260; PLB 1981, 104, 199.

A. Vainshtein Julius-Wess-Award 2014

WEAKLY INTERACTING AND LIGHT!

Klaus Rabbertz

Solar Axions – Helioscopes

Light shines through walls (LSW)

Edelweiss

$m_a \approx 10^{\circ} - 10^{\circ} eV$

Designed for WIMPs to detect N recoils (Weakly Interacting Massive Particles)

Situated in underground lab of Modane

Uses Germanium monocrystals in radiation-poor environment at 18 mK

Can detect Primakoff and axioelectric effect

Measure electron recoils → searched also for DM and solar axions.

Edelweiss, JCAP 2013, 1311, 067.

Example for direct search for new phenomena: Dijet resonance

CMS

19.7 fb⁻¹ (8 TeV

5000

38

Data

Fit

Absolute prediction of QCD not required, only shape of distribution needed \rightarrow perform a "bump hunt"

This direct search was successful ... ETP

Resonance at about 125 GeV ... In this case in the diphoton mass spectrum ...

Klaus Rabbertz

Recall lecture: Four-fermion coupling to be a coupling to

Versuch einer Theorie der β -Strahlen. I¹).

Von E. Fermi in Rom.

Mit 3 Abbildungen. (Eingegangen am 16. Januar 1934.)

Eine quantitative Theorie des β -Zerfalls wird vorgeschlagen, in welcher man die Existenz des Neutrinos annimmt, und die Emission der Elektronen und Neutrinos aus einem Kern beim β -Zerfall mit einer ähnlichen Methode behandelt, wie die Emission eines Lichtquants aus einem angeregten Atom in der Strahlungstheorie. Formeln für die Lebensdauer und für die Form des emittierten kontinuierlichen β -Strahlenspektrums werden abgeleitet und mit der Erfahrung verglichen.

Fermi, Z. Phys., 1934, 88, 16; Nuovo Cim., 1934, 11, 1

Contact interactions (CI)

Models considering elementary particles as composite: "Compositeness", ... Terazawa, Phys. Rev. D, 1980, 22, 184. Eichten, Lane, Peskin, Phys. Rev. Lett., 1983, 50, 811, Baur, Hinchcliffe, Zeppenfeld, Int. J. Mod. Phys. A, 1987, 2, 1285. Hewett, Rizzo, Phys. Rept., 1989, 183, 193. Frampton, Glashow, Phys. Lett. B, 1987, 190, 157. Simmons, Phys. Rev. D, 1997, 55, 1678. Randall, Sundrum, Phys. Rev. Lett., 1999, 83, 3370.

Approximate low-energy phenomena as contact interaction:

Indirect search in dijet system

35.9 fb⁻¹ (13 TeV)

Teilchenphysik II: Top-Quarks und Jets am LHC

Sommersemester 2021 (4022171)

Institut für Experimentelle Teilchenphysik

Link zur Webseite

- Teilchenphysik II:
 - **Top-Quarks und Jets am LHC (N. Jafari, K. Rabbertz)**
 - W, Z und Higgs an Collidern (R. Wolf)
- Moderne Methoden der Datenanalyse (P. Goldenzweig, G. Quast, R. Wolf)
- Sowie ggf. Theorie, Astroteilchenphysik, Beschleunigerphysik, ...

Hauptseminar

"Experimentelle und Theoretische Methoden der Teilchenphysik "

Prof. Dr. G. Heinrich, Prof. Dr. G. Quast, Dr. S. Gieseke Mi. 16:00-17:30, Geb. 30.23, Raum 12-1 als Blockseminar am Ende des Semesters

Themengebiete:

- Beschleuniger & Teilchendetektoren
- Monte-Carlo-Simulation und Statistische Datenanalyse
- Eichtheorien und Higgs-Mechanismus
- Neue Ergebnisse vom Large-Hadron-Collider am CERN
- Suche nach Physik jenseits des Standardmodells
- Vorbesprechung: Mi, 14.04.2021
- Anmeldung über ILIAS erforderlich

Karlsruhe, 16.02.2021

Collider-Physik am ETP

- CMS: Collider-Physik bei den höchsten Energien am LHC
 - Physikanalyse:
 - Präzisionsmessungen zu QCD, Top, W/Z
 - Higgs-Eigenschaften
 - Suche nach Abweichungen und neuer Physik (DM, ...)
 - Siliziumdetektoren
 - Grid-Computing
- Belle/Belle II: B-Physik and der Y(4S)-Resonanz
 - Analyse der Belle-Daten: CP-Verletzung im B-System
 - Computing und Spurfindungsoftware f
 ür Belle II
- Viele Gelegenheiten zu Bachelor/Master-Arbeiten
 - Info direkt bei uns am ETP
 - Bisher: http://www.etp.kit.edu/veroeffentlichungen.php

45