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1 True or false?

State whether the following statements are true or false and write a short reasoning for

your answer.

a) Consider X(θ) = exp (−iθΓ), where Γ is an operator and θ a real number:

i) There are eigenstates of Γ that are not eigenstates of X(θ).

ii) X(θ) is always unitary.

iii) When Γ is self-adjoint (ΓH = Γ, also often written Γ† = Γ), it is possible to

�nd a vector |G〉 such that 〈G|G〉 6= 〈G|X(θ)HX(θ)|G〉.

b) Consider the transition of a two level system. In units of ~ = 1, the di�erence

between the energies of the two levels is ω0, and the di�erence between their angular

momentum is 1:

i) Any light beam with average energy equal to ω0 can induce the transition

ii) Any light beam with average angular momentum equal to 1 can induce the

transition

iii) Any light beam with average energy equal to ω0 and average angular momen-

tum equal to 1 can induce the transition

c) The algebraic tools that we develop in class (inner products, average of operators,

etc ...) can be used to treat the physics of single photons

d) In classical electromagnetism, we cannot understand the outcomes of measurements

using inner products

e) M, the Hilbert space of Maxwell solutions in vacuum, is a useless construct for the

study of light-matter interactions
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2 Symmetry and commutators

Consider S and X(θ), two linear operators which map elements of M onto elements in

M. X(θ) is a unitary transformation corresponding to a continuous symmetry, which is

generated by a Hermitian operator Γ: X(θ) = exp(−iθΓ) for real θ. Consider the two

following equations

A: X(θ)SX(θ)−1 = S ∀ θ
B: [S,Γ] = 0

(1)

a) Show that B =⇒ A

b) Show that A =⇒ B

3 Discrete Translational Invariance

In this exercise, you will investigate some of the consequences of discrete translational

invariance. Such kind of symmetry appears, for example, in natural and arti�cial crystals.

Before we start, here are some preliminary short questions:

a) Consider a general plane-wave with momentum k = [kx, ky, kz]:

i) Is the plane-wave an eigenvector of the linear momentum operator along the

y-axis, Py?

ii) If the answer is yes, which is the eigenvalue?

iii) What is the result of Py|k〉 = ?

iv) What is the result of a translation by ∆ along the y-axis? Ry(∆)|k〉 = ?

b) What is the angular frequency ω of the plane-wave? (Recall that we set the speed

of light to c0=1)

c) The frequency ω is the eigenvalue of a generator:

i) Write down two names for such generator.

ii) What kind of transformations does it generate?

iii) What does a time-invariant system not mix?

d) With our conventions, it is always true that, for a plane-wave k2x + k2y + k2z = ω2,

and that ω is a positive real number.

i) Assume that kx = 0 and that ky is real. What needs to happen with kz if

|ky| > ω?
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Figure 1: Array of silicon disks.

ii) This kind of plane-waves are called �evanescent�. How does such an evanescent

plane-wave depend on z?

Look now at Fig. 1. Consider �rst the a) and b) panels. They show two di�erent views

of an array made of silicon disks on top of a glass substrate. The disks are arranged in

a �square�-symmetric way (see Fig. 1a)). The coordinate axes at the center of the �gure

applies to the array views in panels b), c), and d). The shortest distance between the

centers of two disks is d. Both the substrate and the disk arrangement extend to in�nity

in the x and y directions. The system is invariant under the following translations:

Tx(nd) and Ty(md), where n and m are any integer number. In panels c) and d), the

black arrow represents the plane-wave whose momentum lies along the z-axis: k =
[0, 0, 2π]. This plane-wave illuminates the system, and we label it |0 0 2π〉. We ignore

its polarization for now. The green and magenta arrows in panels c) and d) represent

propagating (non-evanescent) plane-waves that arise upon light-matter interaction. The

dotted curves in panels c) and d) represent evanescent plane-waves that arise upon light-

matter interaction.

e) The response of the array does not change with time: What will be the angular

frequency ω̄ of any outgoing �eld?
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f) Write down the formula that the discrete translational symmetry Ty(md) implies

for the scattering operator S of the system. Hint: Use the formulat that constitutes

the basic de�nition of symmetry from the lectures.

g) Consider the m = 1 case in Ty(md). Derive the conditions imposed on k̄y by this

symmetry so that the scattering amplitude 〈k̄x k̄y k̄z|S|0 0 2π〉 is not equal to zero.

The answer to the previous question is k̄y = 2π
d sy for integer sy. Similarly, one can derive

from the Tx(d) symmetry that k̄x = 2π
d sx for integer sx.

h) Write down a formula for the value of k̄2z as a function of d, sx and sy

i) The case (sx, sy) = (0, 0) is often called �zeroth di�raction order�.

i) What color corresponds to the �zeroth di�raction order� in panels c) and d)?

ii) How many plane-waves in each panel correspond to the �zeroth di�raction

order�?

Consider the case (sx = 0, sy = 1), which is a ��rst di�raction order�. The �rst order(s)

can be evanescent like in panel c) or propagating like in panel d)

j) What does the periodicity d have to meet so that the scattering behavior looks like

panel c) and not panel d)?

k) What is the smallest value of |k̄y| that the magenta arrows in panel d) can have?

Let us change gears a bit to �nish up.

l) What other geometrical symmetries does the array have? Consider discrete rota-

tions and mirror symmetries.

m) Assume that the illuminating plane-wave is linearly polarized along the x-axis:
What is the polarization of the green plane-waves in panel c)? Why?
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