Exercise sheet 4. Theoretical Nanooptics. WS 2022/2023

Ivan Fernandez-Corbaton and Maxim Vavilin

Karlsruhe Institute of Technology

17. February 2023

1 True or false?

State whether the following statements are true or false and write a short reasoning for your answer.

- a) (1 Point) Duality transformation commutes with rotations around any axis.
- b) Consider the state $|\Phi\rangle = |\mathbf{k} + \rangle + |\mathbf{k} \rangle$:
 - i) $(1/2 \text{ Point}) |\Phi\rangle$ is an eigenstate of the helicity operator.
 - ii) $(1/2 \text{ Point}) |\Phi\rangle$ is an eigenstate of the parity operator.
 - iii) (1 Point) $|\Phi\rangle$ can be an eigenstate of infinitely many mirror reflection operators.
- c) (1/2 Point) A rotation commutes with all mirror reflections.
- d) (1/2 Point) A rotation never commutes with a mirror reflection.
- e) (1/2 Point) Parity followed by a mirror reflection anti-commutes with the helicity operator.
- f) Consider a dual-symmetric object with a discrete rotational symmetry $R_z\left(\frac{2\pi}{4}\right)$
 - (a) (1/2 Point) The illumination $|k\hat{\mathbf{z}}| + |2k\hat{\mathbf{z}}| |$ produces some backscattering.
 - (b) (1 Point) Such an object makes a good light sail, where a laser pushes the object away by means of the optical force.

2 Generator of time translations (3 Points)

In this exercise, you will identify the expression of the generator of time translations for functions $f(t) \in \mathbb{R}$. First, consider what the action of a time translation is, namely $f(t) \to f(t-\tau)$. You will achieve the goal of the exercise by writing such transformation as $\exp(-i\tau\Gamma)f(t)$, that is, the operator $\exp(-i\tau\Gamma)$ acting on f(t). The goal of the exercise

is to obtain an explicit expression for Γ . Hint: There is a very famous expansion of real-valued one-parameter functions which you can use, and then manipulate the result to get it looking like $\exp(-i\tau\Gamma)f(t)$.

3 Duality transformation and constitutive relations

Consider Maxwell's equations in space-time representation for complex-valued fields

$$\partial_t \begin{pmatrix} \mathbf{D} \\ \mathbf{B} \end{pmatrix} = \begin{pmatrix} 0 & \mathbf{\nabla} \times \\ -\mathbf{\nabla} \times & 0 \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix} \tag{1}$$

together with constitutive relations

$$\begin{pmatrix} \boldsymbol{D} \\ \boldsymbol{B} \end{pmatrix} = \begin{pmatrix} \underline{\underline{\epsilon}} & 0 \\ 0 & \underline{\underline{\mu}} \end{pmatrix} \begin{pmatrix} \boldsymbol{E} \\ \boldsymbol{H} \end{pmatrix}. \tag{2}$$

- a) (1 Point) What symmetry transformation does the helicity operator Λ generate? Write its action on a general plane wave with definite helicity $|\mathbf{k}\lambda\rangle$.
- b) (2 Points) Write Maxwell's equations Eq.(1) in the G_{\pm} representation using the constitutive relations.
- c) (2 Points) How do Maxwell's equation change under the action of the duality transformation $G_{\lambda} \to \tilde{G}_{\lambda} = D(\theta)\tilde{G}_{\lambda}$?
- d) (1 Points) Consider a scatterer with $\underline{\underline{\epsilon}} = \underline{\underline{\mu}}$. What symmetry property does this condition imply for the scatterer? Explain your answer.
- e) (1 Point) Consider transformation of a scatterer $\underline{\epsilon} \to \underline{\underline{\epsilon}}' = \underline{\underline{\mu}}, \underline{\underline{\mu}} \to \underline{\underline{\mu}}' = \underline{\underline{\epsilon}}$. Which duality tranformation is it equivalent to? Explain your answer.

4 Zero back scattering: duality and rotation symmetries

Consider scattering by a 3D object, where we are interested in incident and scattered states along a fixed axis \hat{z} . In other words, we will be only considering states $|\pm \hat{z}, \lambda\rangle$. The incident field shall be directed in the positive z-direction.

- a) (3 Points) Assume the scatterer is symmetric under rotations $R_z(\alpha)$ for some fixed α (not for all α 's). Conduct analysis of what this condition implies for the scattering states.
- b) (3 Points) Assume the scatterer is symmetric under duality transformation $D(\theta)$ for some fixed θ (not for all θ 's). Conduct analysis of what this condition implies for the scattering states.

Now consider scattering by a two-dimensional square lattice. The lattice consists of two types of spheres that are placed in a checkered order. One type of spheres is described

by $\epsilon=a,\,\mu=1$ and the other is described by $\epsilon=1,\,\mu=a.$ Figure 1 is a sketch of the unit cell of the lattice.

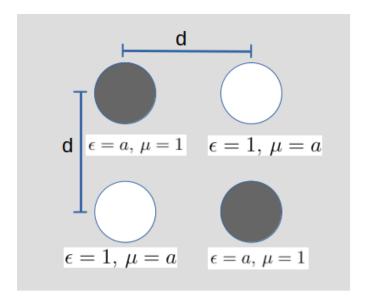


Figure 1: Unit cell of a two-dimensional square lattice.

- c) (2 Points) Prove that the scatterer is symmetric under the $R(\frac{\pi}{2})D(\frac{\pi}{2})$ transformation.
- d) (2 Points) What consequence does this symmetry have for the scattering states?