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1 Discrete Translational Invariance

In this exercise, you will investigate some of the consequences of discrete translational
invariance. Such kind of symmetry appears, for example, in natural and artificial crystals.

Before we start, here are some preliminary short questions:

a) Consider a general plane-wave with momentum k = [k, ky, k.]:

i) (1 Point) Is the plane-wave an eigenvector of the linear momentum operator
along the y-axis, P,?

ii) (1 Point) If the answer is yes, what is the eigenvalue?

)
ili) (1 Point) What is the result of Pylk) =7

iv) (1 Point) What is the result of a translation by A along the y-axis? T, (A)[k) =7
b) (1 Point) What is the angular frequency w of the plane-wave? (Recall that we set

the speed of light to cop=1)
c¢) The frequency w is the eigenvalue of a generator:
i) (1 Point) Write down two names for such generator.
ii) (1 Point) What kind of transformations does it generate?
iii) (1 Point) What does a time-invariant system not mix?
d) With our conventions, it is always true that, for a plane-wave k2 + kg + k2 = w?,

and that w is a positive real number.

i) (1 Point) Assume that k, = 0 and that k, is real. What needs to happen with
ks if k| > w?



ii) (1 Point) This kind of plane-waves are called “evanescent”. How does such an
evanescent plane-wave depend on z?
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Figure 1: Array of silicon disks.

Look now at Fig. 1. Consider first the a) and b) panels. They show two different views
of an array made of silicon disks on top of a glass substrate. The disks are arranged in
a “square”-symmetric way (see Fig. 1a)). The coordinate axes at the center of the figure
apply to the array views in panels b), c¢), and d). The shortest distance between the
centers of two disks is d. Both the substrate and the disk arrangement extend to infinity
in the = and y directions. The system is invariant under the following translations:
Ty(nd) and Ty (md), where n and m are any integer number. In panels ¢) and d), the
black arrow represents the plane-wave whose momentum lies along the z-axis: k =
[0,0,27]. This plane-wave illuminates the system, and we label it |0 0 27). We ignore
its polarization for now. The green and magenta arrows in panels ¢) and d) represent
propagating (non-evanescent) plane-waves that arise upon light-matter interaction. The
dotted curves in panels ¢) and d) represent evanescent plane-waves that arise upon light-
matter interaction.

e) (1 Point) The response of the array does not change with time: What will be the
angular frequency @ of any outgoing field?



f) (1 Point) Write down the formula that the discrete translational symmetry 7T}, (md)
implies for the scattering operator S of the system. Hint: Use the formula that
constitutes the basic definition of symmetry from the lectures.

g) (2 Points) Consider the m = 1 case in T),(md). Derive the conditions imposed on
k, by this symmetry so that the scattering amplitude (k; k, k.|S|0 0 2m) is not
equal to zero.

The answer to the previous question is Ey = %’Tsy for integer s,. Similarly, one can derive
from the T, (d) symmetry that k, = %’rsz for integer s,.

h) (1 Point) Write down a formula for the value of k2 as a function of d, s, and s,
i) The case (sg,sy) = (0,0) is often called “zeroth diffraction order”.

i) (1 Point) What color corresponds to the “zeroth diffraction order” in panels
c¢) and d)?

ii) (1 Point) How many plane-waves in each panel correspond to the “zeroth
diffraction order™?

Consider the case (s, = 0,s, = 1), which is a “first diffraction order”. The first order(s)
can be evanescent like in panel ¢) or propagating like in panel d)

j) (1 Point) What does the periodicity d have to meet so that the scattering behavior
looks like panel c¢) and not panel d)?

Let us change gears a bit to finish up.

k) (2 Points) What other geometrical symmetries does the array have? Consider
discrete rotations and mirror symmetries.

1) (1 Point) Assume that the illuminating plane-wave is linearly polarized along the
x-axis: What is the polarization of the green plane-waves in panel ¢)? Why?

2 Continuous Translational Invariance

Consider a thin dielectric slab, described by S, which is infinite in the 2- and y-directions
and is surrounded by free space. The fields in the free space outside of the slab can
be described by eigenvectors of the translation operator |k) (arbitrary polarization is
implied). For a given incoming state |k) we wish to find properties of the outgoing states
|k’) using the symmetry of the problem. Fields inside the slab are not of interest. Apply
the S-operator formalism and the symmetry arguments to complete the following tasks:

a) (2 Points) The quantity (k|S|k) is the probability amplitude of the given incoming
state |k) to be scattered into a state |k’). Use the translational symmetry of the
scatterer to derive the corresponding conservation law.



b) (1 Point) Is the state |k) an eigenvector of the Hamiltonian operator H? If yes,
give its eigenvalue.

c) (1 Point) Assume that the scatterer conserves energy and derive the corresponding
conservation quantity.

d) (2 Points) Given an incoming state |k), what are the scattered states |k’) that are
allowed by the conservation constraints? Give their physical interpretation.

Now consider two semi-infinite half-spaces (with a planar interface) that are characterized
by refractive indices n and n’. A plane wave with momentum k is refracted into a plane
wave with momentum k’. Without using the S-operator formalism but using symmetry
considerations derive the Snell’s law:

e) (1 Point) How does the frequency of the plane wave change under refraction?
f) (2 Points) How does the momentum change under refraction? Explain your answer.

g) (2 Points) Derive the Snell’s law.

3 Duality Transformation and Constitutive Relations

Consider Maxwell’s equations in space-time representation for complex-valued fields

()= (o W) ) R

together with constitutive relations

(&)= (6 1) () ®

a) (1 Point) What symmetry transformation does the helicity operator A generate?
Write its action on a general plane wave with definite helicity |kA).

b) (2 Points) Write Maxwell’s equations Eq.(1) in the G4 representation using the
constitutive relations.

¢) (2 Points) How do Maxwell’s equation change under the action of the duality trans-
formation Gy — G\ =D(0)G,?

d) (1 Points) Consider a scatterer with ¢ = p. What symmetry property does this
condition imply for the scatterer? Explain your answer.

=

e) (1 Point) Consider transformation of a scatterer ¢ — ¢ = pu, p — p' = e. Which

duality transformation is it equivalent to? Explain your answer.



4 Generator of Time Translations (3 Points)

In this exercise, you will identify the expression of the generator of time translations
for functions f(t) € R. First, consider what the action of a time translation is, namely
f(t) — f(t—7). You will achieve the goal of the exercise by writing such transformation
as exp(—i7T") f(¢), that is, the operator exp(—i7I") acting on f(¢). The goal of the exercise
is to obtain an explicit expression for I'. Hint: There is a very famous expansion of real-
valued one-parameter functions which you can use, and then manipulate the result to get
it looking like exp(—i7D) f(t).
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