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1 True or false?

State whether the following statements are true or false and write a short reasoning for
your answer.

a) (1 Point) Duality transformation commutes with rotations around any axis.

b) Consider the state |Φ⟩ = |k +⟩+ |k −⟩:

i) (1/2 Point) |Φ⟩ is an eigenstate of the helicity operator.

ii) (1/2 Point) |Φ⟩ is an eigenstate of the parity operator.

iii) (1 Point) |Φ⟩ can be an eigenstate of infinitely many mirror reflection opera-
tors.

c) (1/2 Point) A rotation commutes with all mirror reflections.

d) (1/2 Point) A rotation never commutes with a mirror reflection.

e) (1/2 Point) Parity followed by a mirror reflection anti-commutes with the helicity
operator.

f) Consider a dual-symmetric object with a discrete rotational symmetry Rz

(
2π
4

)
(a) (1/2 Point) The illumination |kẑ +⟩+ |2kẑ −⟩ produces some backscattering.

(b) (1 Point) Such an object makes a good light sail, where a laser pushes the
object away by means of the optical force.
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2 treams

In this task, you will go through a short introductory example of solving a physical
problem using the code treams, which is a T-Matrix scattering code for nanophotonic
computations developed by the Institute of Theoretical Solid State Physics at KIT [1].
treams is a python package, which you can install on your machine for this exercise. You
can find the installation guide in the documentation https://tfp-photonics.github.
io/treams/ along with other useful information you might need for this task. You do
not really need any programming experience for this exercise, just the hints given and the
code documentation. When in doubt, remember that there is a command implemented
for everything that we are looking to calculate here.

Please submit a .py or .ipynb file together with your pen and paper submission. Make
sure your code is clean and easily readable, well commented such that each step is log-
ically traceable, and print all of the sought after values together with some text that
unambiguously specifies what they are.

In case you are not familiar with Python, you can still solve this exercise. You do not
really need any Python syntax except for importing packages, assigning variables and
printing lines and variables, which is sketched in a simple example below. Everything
else is treams-specific syntax you can find in the documentation.

In case you need it, there is an official Python tutorial here: https://docs.python.
org/3/tutorial/index.html. Python can also be used within the framework of Conda/
Miniconda, which is a command line tool that supports and manages environments and
has a user friendly interface. You can find the user guide here: https://conda.io/
projects/conda/en/latest/user-guide/index.html.

# python example
import treams
import numpy as np

# assigning values to some variables
a = 4-3j
b = -2+1j

# calculating some things and printing
abs_a = np.abs(a)
print("Absolute value of a is ", abs_a)
print("Absolute value of b is ", np.abs(b))
print("a(b*)=", a*np.conjugate(b))
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This code returns the following

Absolute value of a is 5.0
Absolute value of b is 2.23606797749979
a(b*)= (-11+2j)

You will be calculating some T-matrices in this exercise, so let us first shortly discuss
what the T-matrix actually is. In the lecture, you have learned about the scattering
matrix, the S-matrix, which is closely connected to the T-matrix through

S = 1+ 2T . (1)

The S-matrix in that sense relates the incoming fields to the outgoing ones.

When considering how light interacts with matter, one can always just look at the inci-
dent electric fields and upon calculation of the scattered electric fields, all of the relevant
information about the waves outside of the scatterer is known. The magnetic fields can
be calculated from the electric ones in accordance to Maxwell’s equations. If we expand
the incoming and scattered fields in the spherical wave basis, we get four coefficients,
alm, blm, plm and qlm, in agreement with [2, Eqs. (5-6)], Eqs. (5), (6)

Einc(r) =

∞∑
l=1

l∑
m=−l

(
almMlm(r) + blmNlm(r)

)

Esca(r) =
∞∑
l=1

l∑
m=−l

(
plmMlm(r) + qlmNlm(r)

)
,

(2)

where Mlm(r) and Nlm(r) are the vector spherical harmonics, and with r pointing outside
of the scatterer. Since Maxwell’s equations are linear, one can relate the incident field
coefficients, alm and blm, to the scattered field coefficients, plm and qlm via a linear
transformation, which can be formulated as a matrix. Calling this matrix T, we can
write down the relation as (

p
q

)
= T

(
a
b

)
(3)

In a linear, time-invariant, homogeneous, isotropic, local and reciprocal medium the
chiral constitutive relations are given by( 1

ϵ0
D

cB

)
=

(
ϵ iκ

−iκ µ

)(
E

Z0H

)
, (4)

where ϵ, µ and κ are the relative permittivity, relative permeability, and chirality pa-
rameter, respectively. In case you are not familiar with them, there is some useful
information on cross sections on Wikipedia: https://en.wikipedia.org/wiki/Cross_
section_(physics).
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a) (2 Points) Define a chiral sphere in a chiral embedding and calculate the rotational
and polarization average scattering and extinction cross-section for this setting.
You will need to calculate the T-matrix as an intermediate step.
Use the following system parameters: Sphere - relative permittivity ϵ = 4 + 0.1i,
relative permeability µ = 1 + 0.1i, chirality parameter κ = 0.5 + 0.05i; Embed-
ding medium - relative permittivity ϵ = 1.2, relative permeability µ = 1, chirality
parameter κ = 0.1. Use a maximal multipolar order of 3 for your T-matrix, a wave-
length in vacuum λ0 = 1 and a sphere radius r = 0.3. Note that in the code the
units are implemented relatively and hence, here they are arbitrary, meaning that
as long as all parameters given are of the same order of magnitude (say, everything
is in nm), one does not need to specify it.
Hint: For setting up the materials for the sphere and the embedding, use the
class treams.Material, for the creation of the sphere and calculation of its T-
matrix use the classmethod treams.TMatrix.sphere and finally, for the rotational
and polarization average scattering and extinction cross-section use the property
treams.TMatrix.xs_sca_avg and treams.TMatrix.xs_ext_avg, respectively.

b) (2 Points) Calculate the scattering and extinction cross section of the same chiral
sphere as above now depending on the illumination direction and polarization. Im-
plement two incoming plane waves, each propagating along the z-axis with vacuum
wavelength λ0 = 1 and helicity +1 and −1, respectively, and calculate the cross
sections for these waves as illumination.
Hint: To implement the plane waves, use the function treams.plane_wave (this
gives you the wave coefficients), where you can assign the helicity to the ar-
gument pol (0 or 1, see Documentation for more) after checking that the de-
fault polarization mode is helicity (in treams.config.POLTYPE). Use the prop-
erty treams.TMatrix.xs to calculate the cross section for the specific illumination
wave.

c) (2 Points) Create a dimer out of two of the chiral spheres implemented above
positioned at r1 = (0, 0,−0.4) and r2 = (0, 0, 0.4). In a setting such as this, upon
illumination, there will be multiscattering between the two spheres. Hence, one
can incorporate this coupling in the off-diagonal elements of the T-matrix and then
work with this T-matrix, which now describes the dimer of the two spheres as a
whole. Construct the so-called local T-matrix of the composite system by letting
the two spheres interact and calculate the scattering and extinction cross section
of the dimer for illumination with a plane wave propagating along the z-axis with
vacuum wavelength λ0 = 1 and helicity +1.
Hint: Use the classmethod treams.TMatrix.cluster to create the block-diagonal
T-Matrix that includes all the individual T-matrices of the cluster elements (here,
the two spheres). Going from that to the local T-matrix that includes the coupling
happens via the function treams.TMatrix.interaction.solve(). This function
does not need any arguments, just use it as an attribute of the block-diagonal
T-matrix you get from the cluster method.
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d) (2 Points) The local T-matrix of a composite system, as the name suggests, is an
expansion of the contributions into the local bases, which is a set of bases, each
centered around one of the objects in the system. In this example, we have a set
of two spherical wave bases, each centered around one of the spheres. Logically,
it would be a lot simpler to describe the system using just one common basis.
Expand the local T-matrix of the dimer from above into a global spherical wave
basis centered around the origin of the coordinate system up to a multipolar order
of 10 and calculate the scattering and extinction cross section for an illumination
with a plane wave propagating along the z-axis with vacuum wavelength λ0 = 1
and helicity +1. Compare the values for the cross sections calculated with the local
and global T-matrix.
Hint: Using the classmethod treams.SphericalWaveBasis.default, define the
global spherical wave basis and expand the local T-matrix into it via the function
treams.TMatrix.expand.

e) (2 Points) Rotate the dimer from above by an angle of π/2 about the y-axis and
calculate again the T-matrix and scattering and extinction cross section for illu-
mination with a plane wave propagating along the z-axis with vacuum wavelength
λ0 = 1 and helicity +1. Have the cross section values changed? Why?
Hint: Define a rotation operator with the appropriate Euler angles (treams.Rotate,
which returns a class Operator object) and calculate the T-matrix after the rota-
tion using the active transformation law for an operation R on a matrix T , RTR−1.
Build the inverse by utilizing the built-in method treams.operators.inv. For ma-
trix multiplication use the Python @ operator. After applying the transformation
on the original T-matrix, you can define the new T-matrix object by using the class
treams.TMatrix.

f) (2 Points) Build a square lattice out of chiral spheres such as the ones above, with
a lattice constant a = 0.8. Compute the S-matrix (use the basis of the plane wave
from above for this) and then calculate the transmittance and reflectance for illu-
mination with a plane wave propagating along the z-axis with vacuum wavelength
λ0 = 1 and helicity +1 and −1. Do not forget to let the spheres in the lattice
interact and build the S-matrix from the corresponding T-matrix that includes the
coupling Do you notice something peculiar about the coefficients? Can you explain
it?
Hint: First define the lattice by using an appropriate method of the implemented
class treams.Lattice, then calculate the interaction T-matrix of the lattice by
utilizing the method treams.TMatrix.latticeinteraction.solve, which takes
the arguments (lat, kvec), where lat is a treams.Lattice object and kvec is an
array with the k-vector coefficients that the lattice is to be illuminated by. Then,
the classmethod treams.SMatrices.from_array will give you the S-matrix as an
SMatrices object, which you can use to calculate the transmittance and reflectance
using treams.SMatrices.tr. You can extract the basis of a given array by utilizing
the property .basis
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g) (1 Point) Perform the same calculation but for a grid that is slightly off from square,
i.e. for a rectangular grid with lattice constants 0.79 and 0.81. In this setting one
could argue that the rotational four-fold symmetry of the lattice is “approximate”.
Would you say that is the case here? Look at the new values you get. How does
the result change? Can you say something about the amount by which it changes?

h) (1 Point) Run again the same calculation for a rectangular grid with distinctly
different lattice constants, 0.8 and 1.6, and compare your results to those from the
previous computations.
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