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Abstract. The aim of these lectures is to provide a simple introduction
to an unconventional approach to electromagnetism. From the start, the
prominent role of the electric and magnetic fields is taken over by two
other fields. These fields represent the two handedness that Maxwell
solutions can have. The use of this alternative set of fields has notable
advantages over the electric and magnetic fields: Decoupled evolution
equations, relativistic invariance, and the remarkable ability to split the
two possible handedness in electromagnetism.
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1 About these lectures

On the one hand, many of the ideas and concepts contained in these lectures are
not new. The two handedness fields are Rieman-Silberstein-like combinations,
and I would like to highlight the seminal works of I. Bialynicki-Birula about
the Riemann-Silberstein vectors [1–3]. On the other hand, the versions of the
Riemann-Silberstein vectors used in these lectures are not the ones that are
typically found in the literature, and I am not aware of the existence of a gentle
introduction to the formulism and its consequences, which is the main objective
of these lectures.

My aim is that the lectures can be understood from a basic knowledge of
electromagnetism and a few mathematical tools, namely Fourier transforms and
some aspects of vector calculus. I explicitly write down even simple derivations,
and, when faced with what I perceived as a choice between mathematical rigor
and pedagogical value I have always opted for the latter, bluntly so in a few
instances. I have intentionally not started by discussing the helicity operator and
showing that it determines the structure of Maxwell equations. I have rather let
the structure emerge naturally from Maxwell equations whey they are looked at
in the right way.
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2 An alternative form of Maxwell equations

We start with Maxwell equations in vacuum assuming ε0 = µ0 = 1, or, alterna-

tively, c0 = 1/
√
ε0µ0 = 1 and Z0 =

√
µ0

ε0
= 1

a©: ∇ ·E(r, t) = 0, ∂tE(r, t) = ∇×H(r, t),

b©: ∇ ·H(r, t) = 0, ∂tH(r, t) = −∇×E(r, t),
(1)

and manipulate them as follows

a© + i b©√
2

: ∇ ·
[
E(r, t) + iH(r, t)√

2

]
= 0,

∂t

[
E(r, t) + iH(r, t)√

2

]
= ∇×

[
H(r, t)− iE(r, t)√

2

]
= −i∇×

[
E(r, t) + iH(r, t)√

2

]
,

a©− i b©√
2

: ∇ ·
[
E(r, t)− iH(r, t)√

2

]
= 0,

∂t

[
E(r, t)− iH(r, t)√

2

]
= ∇×

[
H(r, t) + iE(r, t)√

2

]
= i∇×

[
E(r, t)− iH(r, t)√

2

]
.

(2)

We now define a new set of fields

G±(r, t) =
E(r, t)± iH(r, t)√

2
, (3)

and use them to re-write the equations in (2)

∇ ·G+(r, t) = 0, ∂tG+(r, t) = −i∇×G+(r, t),

∇ ·G−(r, t) = 0, ∂tG−(r, t) = i∇×G−(r, t).
(4)

The four equations in (4) are equivalent to the initial Maxwell equations in

(1). The equivalence is clear since the manipulation a©±i b©√
2

together with the

definition in Eq. (3) can be seen as a unitary change of basis, and unitary changes
of basis do not alter the information content. This particular change of basis takes
us from a description of electromagnetism based on the electric and magnetic
fields, E(r, t) and H(r, t), to a description of electromagnetism based on the
G±(r, t) fields. While we have not “broken” anything with such change of basis,
there is a notable difference between the equations in (1) and the equations in
(4): The new set of equations is decoupled. The G+(r, t) field does not depend
at all on or affect the G−(r, t) field in any way, and vice versa. In sharp contrast,
the time evolution equations in (1) show how the electric and magnetic fields
are coupled to each other: The time evolution of E(r, t) depends on H(r, t), and
vice versa. In this sense, while there is no change on the physical content, the
form of Maxwell equations is simpler in (4) than in (1).

The G±(r, t) fields are called the Riemann-Silberstein vectors [3]. Actually, in
these lectures, we will not use the typical version of Riemann-Silberstein vectors,
where the electric and magnetic fields used to build them are real-valued fields.
We will use complex-valued electric and magnetic fields instead. The reason for
this choice will be made clear later.
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3 The ∇×
ω

operator and G± as the polarization description

3.1 From the (r, t) to the (r, ω) domain

One obtains a complex-valued field X(r, t) with the following definition of its
inverse Fourier transform

X(r, t) =

∫ ∞
>0

dω√
2π

X(r, ω) exp(−iωt), (5)

where only positive frequencies are considered. Such one-sided definition is ap-
propriate in electromagnetism because the same information is contained on
both sides of the spectrum. Note that ω = 0 is explicitly taken out of the inte-
gral in Eq. (5). This is because we are dealing with electrodynamics and need
to exclude electro- and magneto-statics.

We will now use the harmonic decomposition on Eq. (5) to work on the
equations in (4). Let us in particular consider the evolution equation for G+(r, t),
and substitute G+(r, t) by its decomposition of the kind written in Eq. (5):

∂t

[∫ ∞
>0

dω√
2π

G+(r, ω) exp(−iωt)

]
= −i∇×

[∫ ∞
>0

dω√
2π

G+(r, ω) exp(−iωt)

]
.

(6)
After applying the ∂t on the left-hand side, shifting the curl to the inside of the
integral of the right-hand side, and moving the right-hand side onto the left-hand
side, we obtain∫ ∞

>0

dω√
2π

[−iωG+(r, ω) + i∇×G+(r, ω)] exp(−iωt) = 0, ∀(r, t). (7)

The only way to meet Eq. (7) is that the term within the square-brackets is
zero for all (r, ω). One can reach this conclusion after thinking about how a
sum of weigthed harmonic functions α(r, ω) exp(−iωt) with different frequencies
can add up to zero simultaneously for all positions r and time instances t. We
therefore have that the evolution equation for G+(r, t) results in the following
equation for G+(r, ω): G+(r, ω) = ∇×

ω G+(r, ω). Very similar steps can be used
to show that the set of equations in (4) result in:

∇ ·G+(r, ω) = 0, G+(r, ω) =
∇×
ω

G+(r, ω),

∇ ·G−(r, ω) = 0, G−(r, ω) = −∇×
ω

G−(r, ω).

(8)

These equations are another form of Maxwell equations. Let us consider just the
curl equations.:

∇×
ω

G±(r, ω) = ±G±(r, ω). (9)

When we consider the object inside the box as an operator, Eq. (9) is telling us
that:
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Box 1

– There are two different kinds of solutions of Maxwell equations.
– Both kinds are eigenstates of an operator, which, in the (r, ω) represen-

tation reads ∇×ω .

– The difference between the two kinds of solutions is their ∇×ω eigenvalue,
which is either +1 or -1.

3.2 The ∇×
ω

operator

Apparently, the operator ∇×ω has a special role in Maxwell equations. Let us
investigate some of its properties, starting by its action on electric and magnetic
fields. Such action can be easily elucidated by bringing the evolution equations
in (1) onto the (r, ω) representation:

∇×
ω

E(r, ω) = iH(r, ω),
∇×
ω

H(r, ω) = −iE(r, ω), (10)

which shows that ∇×ω exchanges electric and magnetic fields. In particular, this

means that E(r, ω) and H(r, ω) are not eigenstates of ∇×ω .

If we apply ∇×ω one more time to Eq. (10)

∇×
ω

∇×
ω

E(r, ω) = i
∇×
ω

H(r, ω)
Eq. (10)

= E(r, ω),

∇×
ω

∇×
ω

H(r, ω) = −i
∇×
ω

E(r, ω)
Eq. (10)

= H(r, ω),

(11)

we find out that1 ∇×ω
∇×
ω =

(∇×
ω

)2
is really the identity operator for solutions

of Maxwell equations. This can also be seen after applying ∇×ω to both sides of
Eq. (9). An operator that squares to the identity has only two eigenvalues: +1
and -1. This means that the G±(r, ω) are all the eigenstates that ∇×ω has for
Maxwellian fields.

3.3 The meaning of G±

The G±(r, ω)(G±(r, t)) fields are also apparently special in the context of Maxwell
equations. Let us investigate their properties by examining them for particular
electromagnetic fields.

We consider a linearly-polarized plane-wave with wavevector k = [0, 0, k]

E(r, ω) exp(−iωt) = x̂ exp(ikz − iωt), (12)

where k = +
√

k · k = ω since we have set c0 = 1. We use Eq. (10) to obtain the
corresponding magnetic field applying the determinant mnemonic to compute

1 The fact that ∇ ·E(r, ω) = ∇ ·H(r, ω) = 0 is implicitly used.
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the curl:

iH(r, ω) exp(−iωt) =
∇×
ω

E(r, ω) exp(−iωt) =
1

ω

∣∣∣∣∣∣
x̂ ŷ ẑ
∂x ∂y ∂z

exp(ikz) 0 0

∣∣∣∣∣∣ exp(−iωt)

=
1

ω

 0
ik exp(ikz)

0

 exp(−iωt) = iŷ exp(ikz − iωt).

(13)

Note that H(r, ω) is also a linearly-polarized plane-wave. We now build G±(r, ω) =
[E(r, ω)± iH(r, ω)] /

√
2 using Eq. (12) and Eq. (13):

G+(r, ω) exp(−iωt) =
x̂ + iŷ√

2
exp(ikz − iωt),

G−(r, ω) exp(−iωt) =
x̂− iŷ√

2
exp(ikz − iωt),

(14)

which shows that G±(r, ω) exp(−iωt) are circularly-polarized plane-waves, specif-
ically, G+(r, ω) exp(−iωt) is left-handed and G−(r, ω) exp(−iωt) is right-handed.

Let us now examine what happens when the initial E(r, ω) exp(−iωt) is
circularly-polarized:

E(r, ω) exp(−iωt) =
x̂ + iŷ√

2
exp(ikz − iωt). (15)

We could repeat the procedure in Eq. (13) to compute iH(r, ω) exp(−iωt) =
∇×
ω E(r, ω) exp(−iωt), but we can also reach the result through a shortcut. The

expression for E(r, ω) exp(−iωt) in Eq. (15) is actually identical to the one for
G+(r, ω) exp(−iωt) in Eq. (14). This means that it is an eigenstate of ∇×ω with

eigenvalue 1, and hence iH(r, ω) exp(−iωt) = x̂+iŷ√
2

exp(ikz − iωt). The corre-

sponding G±(r, ω) exp(−iωt) are then:

G+(r, ω) exp(−iωt) = (x̂ + iŷ) exp(ikz − iωt), G−(r, ω) exp(−iωt) = 0. (16)

It is straightforward to see that when the initial polarization in Eq. (15) is the
of opposite polarization handedness ( x̂−iŷ√

2
), then G+(r, ω) exp(−iωt) = 0 and

G+(r, ω) exp(−iωt) = (x̂− iŷ) exp(ikz − iωt).
In summary:

– When the electric field is a single linearly-polarized plane-wave, the mag-
netic field is also a single linearly-polarized plane-wave, and both G±(r, ω)
are different than zero and circularly-polarized. G+(r, ω) is left-handed and
G−(r, ω) is right-handed.

– When the electric field is a single circularly-polarized plane-wave, the mag-
netic fields is also circularly-polarized with the same handedness, and then,
the G−(r, ω)(G+(r, ω)) vanishes for left(right)-handed polarization.

Which indicates that:
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Box 2

– G+(r, ω) is always left-hand polarized and G−(r, ω) is always right-
hand polarized.

– The G±(r, ω), and consequently also the G±(r, t), split the two handed
components of the electromagnetic field.

– The operator ∇×ω is some kind of handedness operator, whose +1(-1)
eigenvalue corresponds to fields with left(right)-handedness.

We are writing the statements in Box 2 by “extrapolating” from the analysis
of a single plane-wave of particular frequency ω and momentum ωẑ = [0, 0, ω].
While it is obvious that the steps in Eqs. (12-16) hold for any ω, it is not so
apparently obvious that they hold for any wavevector k. But such is indeed the
case, and then, by linearity, they also hold for arbitrary linear combinations of
plane-waves, that is, arbitrary fields. Before showing that such is indeed the case,
let us reflect on what that means with the help of Fig. 1.

Figure 1 has three panels. Each panel represents three different electromag-
netic fields by the sum of the depicted plane-waves. Each plane-wave is char-
acterized by its wavevector and its polarization handedness. The direction and
length of the wavevector is represented by the long straight arrows in the figure.
The polarization handedness are represented by the curved lines, and encoded
by the use of blue color for left-handed and red color for right-handed. On the
leftmost panel of Fig. 1, there are five plane-waves with different wavevectors,
and all the plane-waves are left-handed. On the central panel, all of the four
plane-waves are right-handed. On the rightmost panel there is a mix between
left- and right-handed plane-waves.

According to Box 1, and as indicated in the figure, the G−(r, ω)(G−(r, t))
corresponding to the field in leftmost panel will be zero, the G+(r, ω)(G+(r, t))
corresponding to the field in the central panel will be zero, and neither of the
G±(r, ω)(G±(r, t)) corresponding to the field in the rightmost panel will be zero.
The G±(r, ω)(G±(r, t)) have the ability to split the two handedness components
independently of how many different plane-waves compose the field. This is a
very remarkable property.

Let us now go back to showing that the G±(r, ω)(G±(r, t)) split the two
polarization handedness of the electromagnetic field for any linear combination
of plane-waves. We will do this by showing that G−(r, ω) = G−(r, t) = 0 for
the field corresponding to the leftmost panel of Fig. 1.

To such end, it is convenient to introduce the following notation for a plane-
wave with wavevector k and handedness λ = ±1:

|k λ = ±1〉 ≡ ê±(k̂) exp(ik · r− iωt) =

 i sinφ− λ cosφ cos θ
−i cosφ− λ sinφ cos θ

λ sin θ

 exp(ik · r− ikt),

(17)
where k = ω = +

√
k · k, φ = arctan(ky, kx), θ = arccos(kz/k), k̂ is the unit

vector in the direction of k, and the ê±(k̂) are polarization vectors corresponding
to the two handedness. A plane-wave with wavevector k and handedness λ can
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G+ 6= 0, G− = 0 G+ = 0, G− 6= 0 G+ 6= 0, G− 6= 0

Fig. 1. Three different electromagnetic fields represented as the sum of the depicted
plane-waves. The left-handed plane-waves are blue and the right-handed plane-waves
are red. The G±(r, ω)(G±(r, t)) have the very remarkable ability to split the two
handed components of a given electromagnetic field, independently of how many dif-
ferent plane-waves compose it.

be obtained by the rotation of a reference plane-wave of the same handedness
and frequency [4, Eq. (8.7-1)]:

|k λ = ±1〉 = R(k̂)|
√

k · kẑ λ〉, (18)

where R(k̂) is a rotation that brings the reference wavevector [0, 0,
√

k · kẑ] onto
the target vector k. The standard way of building such rotation is by a rotation
along the ŷ axis by the angle θ followed by a rotation around the ẑ axis by the
angle φ: R(k̂) = Rz (φ)Ry (θ).

The standard reference plane-waves are

|kẑ λ〉 ≡ −λx̂− iŷ√
2

exp(ikz − iωt). (19)

In order for us to go forward, and since we have not introduced certain
powerful algebraic tools, we will need to accept the following statement without
a formal proof:

When a plane-wave of a given handedness λ is rotated, its handedness does
not change.

This is intuitively easy to grap. For example, rotating your right arm does
not change your right hand into a left hand. Similarly, rotating a screw does not
change the handedness of its threads. The statement that we are assuming can
be formally written, using the notation Λ ≡ ∇×ω , as:

If Λ|k λ〉 = λ|k λ〉, then ΛR|k λ〉 = λR|k λ〉 for any rotation R. (20)
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Once we accept this, the proof is relatively easy. The electric field E cor-
responding to the leftmost panel in Fig. 1 can be written as the sum of five
different left-hand polarized plane-waves built as in Eq. (18):

5∑
s=1

αsRs(k̂s)|ksẑ +〉, (21)

where the αs are complex numbers. Let us choose one of the five plane-waves
by fixing s = n so that En is αnRn(k̂n)|knẑ +〉. According to Eq. (10), its
corresponding magnetic field iHn can be computed as ΛEn, namely

ΛαnRn|knẑ +〉 = αnΛRn|knẑ +〉 Eq. (20)
= αnRn|knẑ +〉. (22)

That is En = iHn, implying that Gn
+ 6= 0 and Gn

− = [En − iHn] /
√

2 = 0, which
is true for both (r, ω)- and (r, t)-dependent fields. After seeing that Gn

− = 0,

it is obvious that the whole G− =
∑5
s=1 Gs

− will be equal to zero because the
analysis with s = n works for any other s.

3.4 The importance of complex fields

This is a good point to motivate the choice of complex-valued electric and mag-
netic fields, with harmonic decompositions of the kind in Eq. (5), to build the
G±(r, t) in Eq. (3). Let us assume that we use real-valued fields instead, E(r, t)
and H(r, t)

G±(r, t) =
E(r, t)± iH(r, t)√

2
. (23)

The real-valued fields can be defined as the real part of their complex-valued
counterparts: E(r, t) = Real{E(r, t)}, and H(r, t) = Real{H(r, t)}.

The G±(r, t) in Eq. (23) are still complex, but now, since E(r, t) and H(r, t)
are real we have that G±(r, t) determine each other through complex conjugation:

[G+(r, t)]
∗

= [G−(r, t)] . (24)

This is crucially different from the case of G±(r, t), where such connection does
not exist. There is no physical law that, in general and a priori, ties one hand-
edness to the other as Eq. (24) implies. Therefore, the G±(r, t) are not obviously
suitable to represent the two handed components of the electromagnetic field. In
particular, it can be easily shown that their point-wise squared-norms are equal

|G+(r, t)|2 = |G−(r, t)|2, for all (r, t). (25)

The clean split illustrated in Fig. 1 is hence not possible using the G±(r, t) since
if one of them is zero, so must be the other, according to Eq. (25).
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3.5 The G± split as the polarization description: Generality and
invariance

Let us go back to the G± and investigate further their ability to characterize the
polarization of the electromagnetic field. To such end, we start with the question
of What is polarization?.

The polarization of a field may be defined as its non-scalar degrees of freedom.
That is, those degrees of freedom that scalar fields cannot have. For example,
the Higgs boson has energy, but does not have different polarization states. The
electromagnetic field has scalar degrees of freedom like energy, momentum, an-
gular momentum, and, additionally, can have different polarizations. Non-scalar
degrees of freedom are sometimes called internal degrees of freedom. Table 1 lists
some polarized and unpolarized fields.

Polarized fields Unpolarized fields

Electromagnetic field Temperature
Electrons Pressure
Neutrinos The Higgs boson

Gravitational waves Electric charge density

Table 1. Some fields have a polarization degree of freedom, i.e. a non-scalar degree of
freedom, some other fields do not have it.

Let us focus on the electromagnetic field to tackle the question of how to
characterize its polarization.

When dealing with a single plane-wave, the concept of polarization is quite
intuitive. Polarization is typically understood as the direction of the field os-
cillations in a plane transverse to the wavevector. Fixing one such plane, the
linear, circular, or generally elliptical polarization of the plane-wave is identified
by the geometrical figure that the “tip” of the electric field “draws” on the plane
with the passing of time. This understanding of polarization, though, is quite
restricted to single plane-wave cases, and not applicable in general. For example,
consider the following electric field:

√
2E(r, t) =

x̂ exp (i2ω(z − t))− iŷ [exp (iω(x− t)) + exp (i2ω(z − t))]− ẑ exp (iω(x− t)) .
(26)

It is apparent the field contains at least two different plane-waves of different fre-
quency and wavevector directions. The previous definition of polarization cannot
be applied because it is impossible to find a plane transverse to both wavevec-
tors. We may attempt to define polarization by fixing a point r0 and observing
the trajectory of the “tip” of the electric field E(r0, t) as time elapses. Or we
may fix t = t0 and observe the trajectory of E(r, t0) for some r in a given volume



10 I. Fernandez-Corbaton

or surface. Some exercises with Eq. (26) quickly show the complexity of these
kind of approaches. But, the fact is that the field in Eq. (26) is just

|[ω, 0, 0] +〉+ |[0, 0, 2ω] +〉, (27)

that is, it is a G+.
We will now argue that the G+/G− split is the most general and robust way

to characterize the polarization degree of freedom of the electromagnetic field.
The general applicability of G± is already clear from the previous discussion:

It applies to general linear combinations of plane-waves. Let us discuss its ro-
bustness. By that, we mean the resilience upon transformations, i.e., invariance.
We have already heuristically discussed how the G± character does not change
upon rotations. The linearly-polarized states provides a counter-example. A ro-
tation along the axis defined by the wavevector of a plane-wave transforms the
two orthogonal linear polarization vectors onto each other. Linear polarizations
are hence not invariant under rotations.

Let us keep using the analogy of the threads of a screw to investigate the
transformation properties of the handed G±. In the same way that the threads
do not change handedness when the screw is rotated, they also do not change
handedness upon:

– Spatial translations: Moving the screw from point A to point B.
– Time translations: Letting time pass or moving time backwards.

So, the handedness defined by G± is invariant under time and space transla-
tions and rotations. We only need to add the Lorentz transformations to complete
the Poincaré group, that is, the group of transformations of special relativity.
And we can do that. A Lorent boost, or Lorentz transformation, changes an
inertial reference frame into another intertial reference frame. The new reference
frame moves with a constant velocity β with respect to the original one. Let us
consider the transformation of the electric and magnetic fields upon a Lorentz
boost characterized by the real-valued 3-vector β. The relationship between the
E and H fields in the original reference frame and the Ē and H̄ fields in the
boosted reference frame is [5, Eq. (11.149)]:

a©: Ē =γ (E + β ×H)− γ2

1 + γ
β (β ·E) ,

b©: H̄ =γ (H− β ×E)− γ2

1 + γ
β (β ·H) ,

(28)

where γ = (1 − β · β)−1/2. We now perform the same manipulation that took
the equations in (1) to the equations in (2):

a©+ i b©√
2

: Ḡ+ = γG+ − iβ ×G+ −
γ2

1 + γ
β (β ·G+)

a©− i b©√
2

: Ḡ− = γG− + iβ ×G− −
γ2

1 + γ
β (β ·G−) .

(29)
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Equation (29) shows that a boosts does not mix G+ and G−. Incidentally,
Eq. (28) shows that the notions of electric and magnetic field are not relativis-
tically invariant: A boost mixes electric and magnetic fields.

The conclusion is that the characterization of polarization by means of G± is
relativistically invariant. Actually, the G± character is invariant under a larger
group: The conformal group, which is actually the largest group of invariance of
Maxwell equations [6]. Therefore, the G± character is as robust as anything can
be in electromagnetism.

4 An even simpler form of Maxwell equations and the
ik̂× operator

We will now simplify Maxwell equations further by the use of the following
decomposition of an (r, t)-dependent field:

X(r, t) =

∫
R3−{0}

dk√
(2π)3

X(k) exp (ik · r− ikt)

=

∫ ∞
>0

dk√
2π
k2

[∫
S2

dk̂

2π
X(k, k̂) exp(ik · r)

]
exp(−ikt),

(30)

where, in the second line, we have split the initial dk integral into its radial and
angular parts

∫
R3−{0}

dk√
(2π)3

=

∫ ∞
>0

dk√
2π
k2
∫
S2

dk̂

2π
=

∫ ∞
>0

dk√
2π
k2
∫ π

0

dθ sin θ

∫ π

−π
dφ,

(31)
where θ and φ are defined below Eq. (17) and S2 is the 2-sphere in k space with
radius k. The removal of the origin k = 0 responds again to the exclusion of
electro- and magneto-statics. Recalling that k = ω, and comparing Eq. (30) with
Eq. (5), we establish that:

X(r, ω) = k2
∫
S2

dk̂

2π
X(k, k̂) exp(ik · r), (32)
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which we will now use to work on the equations in (9). To such end, we need to
know what is the effect of ∇×ω in a field X(r, ω) decomposed as in Eq. (32):

∇×
ω

X(r, ω) = k2
∫
S2

dk̂

2π

∇×
ω

X(k, k̂) exp(ik · r)

=
k2

ω

∫
S2

dk̂

2π

∣∣∣∣∣∣
x̂ ŷ ẑ
∂x ∂y ∂z

Xx(k, k̂) exp(ik · r) Xy(k, k̂) exp(ik · r) Xz(k, k̂) exp(ik · r)

∣∣∣∣∣∣
=

ik2

ω

∫
S2

dk̂

2π

 Xz(k, k̂)ky −Xy(k, k̂)kz
−Xz(k, k̂)kx +Xx(k, k̂)kz
Xy(k, k̂)kx −Xx(k, k̂)ky

 exp(ik · r)

= k2
∫
S2

dk̂

2π

ik×
ω

X(k, k̂) exp(ik · r)

= k2
∫
S2

dk̂

2π
ik̂×X(k, k̂) exp(ik · r).

(33)

The one-before-last equality can be easily verified using the expression of the
cross-product between two 3-vectors.

Using Eq. (33), we can write Eq. (9) as:

k2
∫
S2

dk̂

2π

[
ik̂×G±(k)∓G±(k)

]
exp(ik · r) = 0 for all r, (34)

which implies
ik̂×G±(k) = ±G±(k). (35)

It is clear that ik̂× in Eq. (35) represents, in the k domain, the same operator
represented by ∇×ω in the (r, ω) domain.

A very similar procedure allows to show that

∇ ·G±(r, ω) = 0 =⇒ ik ·G±(k) = 0, (36)

and the four Maxwell equations can finally be written in k domain as:

ik ·G±(k) = 0, ik̂×G±(k) = ±G±(k). (37)

The equations in (37) are a very simple form of Maxwell equations. All the
partial derivatives are eliminated and Maxwell equations become algebraic equa-
tions in (37). These are easier to interpret. For example, the ik · G±(k) = 0
conditions say that, given a wavevector k, the polarization of the field must be
orthogonal to it. There cannot be any longitudinal components along k. We say
that Maxwell solutions are transverse.

5 Summary
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The G± forms of Maxwell equations

i∂tG±(r, t) = ±∇×G±(r, t) , ∇ ·G±(r, t) = 0, (38)

∇×
ω

G±(r, ω) = ±G±(r, ω) , ∇ ·G±(r, ω) = 0, (39)

ik̂× G±(k) = ±G±(k) , ik ·G±(k) = 0. (40)

The conversion of the Maxwell equations from their typical form featuring elec-
tric and magnetic fields to their form featuring the G± Riemann-Silberstein-like
fields reveals a simple underlying structure:

The G± Maxwell structure

– There are two decoupled and fundamentally different kinds of solutions
of Maxwell equations: G+ and G−.

– The G± are eigenstates of the operator inside the boxes in Eqs. (39-40)
with corresponding eigenvalues ±1.

– The G± split the handedness content of the field into the left- and
right-handed components, corresponding to G+ and G−, respectively.

The ∇×ω ≡ ik̂× operator is actually the well-known helicity operator. These
two forms of the helicity operator are particular representations of its abstract
definition. The helicity operator Λ is defined as the projection of the angular mo-
mentum operator vector J onto the direction of the linear momentum operator
vector P:

Λ =
J ·P
|P|

. (41)

Helicity is not only relevant in electromagnetism, but also in the general field
of high energy physics. Essentially, helicity is one of the key operators used in
the identification of physical particles and fields with the representations of the
Poincaré group [7]. This identification is the basic idea behind our understanding
of the standard model and its extensions.

6 Concluding remarks

One can see the G± forms of Maxwell equations as one of the bases for an al-
gebraic approach to light-matter interactions. The other bases of such approach
are the setting of Hilbert spaces, and the scattering operator for modeling the
interaction of material objects with the electromagnetic field. With such tools,
the powerful ideas of symmetries and conservation laws can be applied to light-
matter interactions in a straightforward way [8]. In this regard, the advantage
of considering G± and the helicity operator is that helicity is the generator
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of a fundamental symmetry in electromagnetism: The electromagnetic duality
symmetry. Helicity and duality are in the same kind of relationship as angular
momentum and rotations, or linear momentum and translations. The one-to-one
connection to a fundamental symmetry does not exist for other ways of char-
acterizing polarization [9, Sec. 2.4.2]. The use of helicity and duality allows the
use of symmetries and conservation laws for treating polarization in light-matter
interactions [9]. Importantly, the handedness-splitting ability of G± actually ex-
tends to evanescent plane-waves, which are ubiquitous in the near-fields around
illuminated objects (see e.g. [9, Fig. 2.7]).

When a given formulation simplifies the theoretical description of physical
phenomena, it is often the case that such formulation also helps in practical
scenarios. The use of the G± fields is not an exception. The practical application
of the algebraic approach has lead, for example, to criteria for the optimal sensing
of chiral molecules, to the symmetry conditions for zero reflection, and to a
quantitative understanding of near-field directional coupling.
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