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1 Space Probe Propulsion By Solar Sails

We idealize a solar sail of a space probe by an ideal planar mirror (i.e. no losses due to

absorption/heat generation) of rest mass m (Fig. 1). Let Wi be the total amount of energy

of an incoming localized wave packet at normal incidence to the plane mirror. The wave

packet shall be reflected by the mirror and have a total amount of energy Wr after the

reflection.

sun

probe + solar sail
mirror

Figure 1: Realistic and idealized model for a solar sail propelled space probe.

a) Assume that the mirror is at rest before the reflection process. Using the relativistic

formulae for energy and momentum, write down explicitly the expressions for the con-

servation of momentum and of energy for the reflection process, respectively. Then,

show that the velocity v of the mirror and the energy Wr of the reflected wave packet

can be written as

v = c
(1 + 2B)2 − 1

(1 + 2B)2 + 1
, Wr = Wi

1

1 + 2B
, (1)

and determine the constant B in terms of m and Wi. [ 4 Point(s) ]

b) Find expressions for Wr and v in the limits Wi � mc2 and Wi � mc2: Identify the

parameter ε which is much smaller than 1 in these cases and apply a Taylor series

expansion up to the leading order in ε (i.e., beyond the 0th order). [ 3 Point(s) ]

Our sun emits an instantaneous power (luminosity) of Psun = dW
dt
≈ 3.8 × 1026 J/s. Now

consider an actual space probe with a sail of area A and assume that the weight of the probe

is solely determined by its sail, which consists of a material with density 1 g/m2.

http://www.tfp.kit.edu/studium-lehre.php
schoen@kit.edu, rfrank@tfp.uni-karlsruhe.de


c) First, determine which of the limits (if any) discussed in (b) is appropriate if the probe

is launched at the earth (distance r to the sun = 1 AU ≈ 1.5 × 1011 m). Use the

appropriate limit to estimate the pressure on the sail as a function of the distance from

the sun. Show that this pressure is given by an expression of the form

C

r2
(2)

and determine the constant C. [ 2 Point(s) ]

d) With the pressure from (c), first write down the mechanical equation of motion of

the probe. Since this equation can not be solved in closed form, make the crude

approximation that the pressure remains constant at the value it has for x = 1 AU.

Further assume a sail with area A = 100 × 100 m. After which time would the probe

leave our solar system (≈ 250 AU) and when could it reach Alpha Centauri (2.8 ×
105 AU)? Which velocities does the probe have then? Is the non-relativistic treatment

still valid when the probe reached the respective distances? [ 2 Point(s) ]

e) Use a numerical method (e.g., the ordinary differential equation solvers built into Maple,

Mathematica, Matlab, etc.) to solve the full differential equation from (d). Assume

that the probe is launched from earth and is in rest when the sail is expanded. Plot

the distance of the probe and its velocity as a function of time and compare with the

result from (d). [ 2 BONUS Point(s) ]

We start from the following expressions (m is the rest mass):

E = mγc2 (3)

p = mγv (4)

E2 = (pc)2 +
(
mc2

)2
(5)

Here, the γ-factor is given by

γ =
1√

1− β2
(6)

where β = v
c

is the velocity in units of the speed of light c. Thus, for light where m = 0, the

momentum is given by p = E/c.

a) Conservation of energy gives the expression (total energy before process equals total

energy after process)

Wi +mc2 = Wr +mγc2 [ 1 Point(s) ] (7)

while conservation of momentum yields (total momentum before process equals

total momentum after process)

Wi

c
= −Wr

c
+mγv. [ 1 Point(s) ] (8)



Scaling (8) with c and adding it to (7) yields

2Wi +mc2 = mγc2 +mγcv

= mγc2 (1 + β) subs β = v/c

= mc2
1 + β√
1− β2

subs γ by (6)

= mc2
√

1 + β
√

1 + β√
1 + β

√
1− β

expand fraction

= mc2
√

1 + β√
1− β

reduce fraction

Thus, we find (
1 + 2

Wi

mc2

)2

︸ ︷︷ ︸
=:a

=
1 + β

1− β
, (9)

which we can solve for β as

β =
a− 1

a+ 1
=

(
1 + 2 Wi

mc2

)2 − 1(
1 + 2 Wi

mc2

)2
+ 1

. [ 1 Point(s) ] (10)

(Remark for teaching assistants: Alternative forms of this solution include

v =
(2Wi +mc2)2 −m2c4

(2Wi +mc2)2 +m2c4

=
2Wimc

3 + 2W 2
i c

m2c4 + 2Wimc2 + 2W 2
i

=
2Wic(mc

2 +Wi)

(mc2 +Wi)2 +W 2
i

=

√√√√1− 1

[1 + Wi

mc2(1+mc2

2Wi
)
]2

=

√
1− 1

[1 + Wi

mc2
− Wi

2Wi+mc2
]2
.)

The result is an expression for the velocity of the space probe as a function of the

energy of the incoming light.

Similarly, by scaling (8) with c and subtracting it from (7), we obtain

mc2 = 2Wr +mγc2 (1− β) , (11)



which we can solve for Wr:

Wr =
1

2
mc2 (1− γ(1− β))

=
1

2
mc2

(
1− 1− β√

1− β2

)
subs γ by (6)

=
1

2
mc2

(
1−
√

1− β√
1 + β

)
reduce fraction

=
1

2
mc2

(
1− 1√

a

)
subs a by (9)

=
1

2
mc2

(
1− 1

1 + 2 Wi

mc2

)
subs a by (9)

=
1

2
mc2

(
2 Wi

mc2

1 + 2 Wi

mc2

)
normal form of fraction

= Wi
1

1 + 2 Wi

mc2

. [ 1 Point(s) ] reduce fraction

(Remark for teaching assistants: Alternative forms of this solution include

Wr =
Wimc

2

2Wi +mc2

= Wi −
(2Wi)

2

2(2Wi +mc2)
.)

b) Wi � mc2: This is equivalent to ε := Wi

mc2
� 1 [ 0.5 Point(s) ]. Thus, we do a Taylor

series expansion in ε:

β =
(1 + 2ε)2 − 1

(1 + 2ε)2 + 1
= 2ε+O(ε2) ≈ 0 [ 0.5 Point(s) ] (12)

Wr

Wi

=
1

1 + 2ε
= 1− 2ε+O(ε2) ≈ 1 [ 0.5 Point(s) ] (13)

If the rest energy of the sail is much larger than the energy of the incoming light, then

there is almost no acceleration. Almost all energy is reflected and the velocity of the

sail is very small.

Wi � mc2: This is equivalent to ε := mc2

Wi
� 1 [ 0.5 Point(s) ]. Thus, we do a series expan-

sion in ε:

β =

(
1 + 21

ε

)2 − 1(
1 + 21

ε

)2
+ 1

= 1− ε2

2
+O(ε3) ≈ 1 [ 0.5 Point(s) ] (14)

Wr

Wi

=
1

1 + 2 Wi

mc2

=
ε

2
+O(ε2) ≈ 0 [ 0.5 Point(s) ] (15)



If the rest energy of the sail is much smaller compared to the energy of the incoming

light, then almost the entire energy of the light is used for acceleration. Only very little

energy is reflected and the velocity of the sail approaches the velocity of light.

c) (Remark for teaching assistants: This exercise is hard to rate adequately. No

point suggestions are made here, but at least the proper limit to use should be explained

properly by the students.) The mass of our probe can be expressed by the density ρ and

the sail area A as m = ρA, so that the rest energy is given by E0 = ρAc2. The energy

from the sun which reaches the sail per time T is given by Esun = APsunT
4πr2

(actually,

an approximation for large distances entered here, see Fig. 2). The ratio between the

sun

mirror

Figure 2: Mirror area A compared to sphere surface area 4πr2. The solid angle occupied by the

mirror is given by the projection of the mirror area to the sphere surface area. For large distances

r and small angles θ, this projection is in good approximation given by A/4πr2.

energies is then given as

E0

Esun

=
ρAc2

APsunT
4πr2

=
4πr2ρc2

Psun

1

T
≈ 6.69× 1010s

1

T
, (16)

where all numerical values given in the problem have been entered. We find that, even

when integrating the energy for a year (≈ 3.15×107 s), the rest energy of the sail is much

larger than the energy of the light. This justifies to work in the non-relativistic limit ,

where by (13) we have
Wr

Wi

≈ 1. (17)

The pressure can be calculated in various ways. Here, we obtain the pressure u from

the force per area, so u = F/A. To obtain the force, we use Newtons law that the force

is given by the temporal change of momentum, so

u = F/A =
1

A

∂p

∂t
. (18)

As we have seen in problem 1a), the momentum of the probe is simply given by

p =
Wi +Wr

c
≈ 2Wi

c
. by (17) (19)



The force is then given by

F =
∂p

∂t
≈ 2

c

∂Wi

∂t
=

2

c
A
Psun

4πr2
. (20)

So, the pressure is given by

u = F/A =
Psun

2πc

1

r2
= 8.96× 10−6 Pascal. (21)

d) Since we are working in the non-relativisitic limit, we can write Newtons law of

motion (as opposed to relativistic motion involving γ)

m
∂2r

∂t2
= ρA

∂2r

∂t2
= F, (22)

so by (21) we have

∂2r

∂t2
=

Psun

2πcρ

1

r2
. [ 0.5 Point(s) ] (23)

As the problem text suggested, assuming a constant acceleration a0 = Psun

2πcρ
1
x2 , we can

solve this equation of motion as

r(t) = r0 + v0t+
a0

2
t2, (24)

where v0 = 0 and r0 = x = 1 AU. Solving this equation for a given distance r yields:

t =

√
2
r − r0
a0

, [ 0.5 Point(s) ] (25)

so we obtain:

tSolarSystem ≈ 9.13× 107s = 2.89y (26)

tAlphaCentauri ≈ 3.1× 109s = 97y (27)

Makes sense to also check the velocity to make sure, our assumption of non-relativistic

calculations are still okay:

v(t) = a0t =
√

2a0(r − r0), [ 0.5 Point(s) ] (28)

so

vSolarSystem ≈ 8.18× 105m/s ≈ 0.0027c (29)

vAlphaCentauri ≈ 2.7× 107m/s ≈ 0.1c (30)

(Remark for teaching assistants: Students will most likely say, 0.1c is not much

smaller than c, only smaller, and hence the relativistic treatment is no longer allowed.

You can give points for that. However, in the problem session, they should be taught

the following interpretation.) The difference between Einstein (relativistic) and Newton



(classic) lies in the form of the equations of motion, to behold for the velocities when

the force F is given:

F = m
∂

∂t
v (Newton), F = m

∂

∂t
(γv) = m

∂

∂t
(

v√
1− (v

c
)2

) (Einstein) (31)

The question is: When does the relativistic equation of motion effectively look like

Newton’s equation? Answer: when the γ-factor is approximately unity and plays no

big role, as we see by comparing these two equations with each other! Hence, the worst

case is the largest velocity (at Alpha Centauri), so by (6) we find

γAlphaCentauri = 1/
√

1− (0.1)2 = 1.005 ≈ 1, [ 0.5 Point(s) ] (32)

so even when the velocity is one tenth of c, the γ-factor differs only five thousandth

from 1, which again makes the relativistic motion behave much like classical motion.

e) (Remark for teaching assistants: Suggested rating is [ 0.5 Point(s) ] for the distance

plot, [ 0.5 Point(s) ] for the velocity plot — as long as the asymptotic behavior of uniform

motion is visible — and [ 1 Point(s) ] for the comparison with the previous subexercise).

The numerical prefactor in (23) is 1.99× 1021 m3

s2
= 586.3 AU3

y2 . Using the former value

in the numerical solution yields Fig. 3 (which is an acceptable solution), while the

latter value yields Fig. 4 (which should be presented in the problem session). As
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Figure 3: Distance r(t) from sun and velocity v(t) of the space probe in SI units for 5 years.

Fig. 4 shows, the probe needs about 23.3 y now to reach the edge of the solar system

(250 AU) in this more realistic model, more than 8 times as long as in the approxima-

tion of the previous subexercise. Since the velocity saturates pretty quickly at about

10.9 AU
y

, the time needed to head to Alpha Centauri with this propelling method is

circa 2.8×105 AU
10.9AU/y

≈ 25, 700 y, which is way more than in the crude approximation of the

previous subexercise.
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Figure 4: Distance r(t) from sun and velocity v(t) of the space probe in more adequate units AU

and years for 25 years.

2 Lorentz Invariants Of The EM Field

Let K be the rest frame in which the electric and magnetic fields E and B were measured.

The same measurements are now performed in a frame K′ moving at velocity v relative to

K. This yields the values

E′‖ = E‖, E′⊥ =
E⊥ + (v ×B)√

1− (v/c)2
, (33)

B′‖ = B‖, B′⊥ =
B⊥ − (v × E) /c2√

1− (v/c)2
, (34)

where the indices ‖ and ⊥ denote the parts of E and B parallel and perpendicular to the

relative velocity v, respectively. Justify Your calculations properly in the following.

a) Show that the quantity E ·B is relativistically invariant, i.e., it has the same value as

E′ ·B′. [ 3 Point(s) ]

b) Show that the quantity E2 − c2B2 is relativistically invariant. [ 3 Point(s) ]

c) Find expressions for E′ and B′ in the low velocity limit, i.e., when v/c� 1. Compare

Your result with the Lorentz force acting on a moving point charge. What is Your

conclusion about the physical origin of the Lorentz force? [ 3 Point(s) ]

Hint: You may need the following vector identities:

a · (b× c) = b · (c× a) = c · (a× b), (35)

a× (b× c) = b(a · c)− c(a · b). (36)

Note: It can be shown, that Maxwell’s Equations only permit the two invariants discussed

above.

(Remark for teaching assistants: This is a nice exercise to practice the application of

vector algebra. No rating suggestions are given here, follow Your instincts or use the Force.



However, the students should put great care in the proper arguments, why some vector

products vanish and others do not. Thus, points may be subtracted for sloppy presentation

and argumentation. Many students will most likely not use vector arrows and thus make

mistakes like switching from vector algebra to scalar algebra, or write down expressions that

make no sense, e.g. triple products of vectorial quantities — without arrows — with no

parentheses or multiplication signs. Note here, that the cross product is not associative, so

parentheses are mandatory then. Furthermore, the cross product is anticommutative, while

the scalar product is commutative.)

Any arbitrary vector a can be written as the sum of the parts a‖ parallel and a⊥ perpendicular

to the velocity v (b is another arbitrary vector, not the magnetic field here), where

a× a = 0 (37)

a · a = a2, (38)

a = a⊥ + a‖, (39)

a‖ × v = 0, (40)

a⊥ · v = 0, (41)

a⊥ · b‖ = 0, (where b = b⊥ + b‖) (42)

|a× v| = |a||v| sin(∠(a,v)). (43)

However, note that in general we have

a⊥ × b⊥ 6= 0, (44)

since a⊥ and b⊥ only lie in the plane perpendicular to v, but are in general not parallel to

each other! Terms involving these products will cancel out in the following.

This is basic stuff, which the students should know already. From these basic relations, we

need to derive some more identities for the following computations.

First identity is

v × a = v × (a‖ + a⊥) by (39) (45)

= v × a‖︸ ︷︷ ︸
=0 by (40)

+v × a⊥ factored out (46)

= v × a⊥. (47)

Using this identity, we can derive the second identity (note the two different vectors a and

b here) as

b‖ · (v × a) = b‖ · (v × a⊥) by (47) (48)

= v · (a⊥ × b‖)︸ ︷︷ ︸
⊥v

(49)

= 0. by (42) (50)



Furthermore we need these products with the same vector a as

a⊥ · (v × a) = a⊥ · (v × a⊥) by (47) (51)

= v · (a⊥ × a⊥)︸ ︷︷ ︸
=0 by (37)

(52)

= 0. by (42) (53)

Finally, from the the first identity we also find the third identity, where α = π/2 is the angle

between v and a⊥:

(v × a)2 = (v × a⊥)2 by (47) (54)

= |v|2|a⊥|2 sin2(α)︸ ︷︷ ︸
=1 by remark

by (43) (55)

=: v2a2
⊥. (56)

(Remark for teaching assistants: At this point, it may be necessary to stress

that quantities without vector arrows/bold letters are always meant to be the

absolute values/magnitudes of said vectors. Not everyone may know this cus-

tom.)

Furthermore, we need the γ-factor again:

γ =
1√

1− β2
, with β = v/c. (57)

a) We can split the field vectors as follows up into

E′ ·B′ =
(
E′‖ + E′⊥

)
·
(
B′‖ + B′⊥

)
by (39) (58)

= E′‖B
′
‖ + E′⊥B

′
⊥ by (42) (59)

= E‖ ·B‖︸ ︷︷ ︸
term 1

+γ2
(
E⊥ + v ×B

)
︸ ︷︷ ︸

term 2

(
B⊥ −

v × E

c2
)︸ ︷︷ ︸

term 3

by (33), (34) (60)

We factor out the product of terms 2 and 3 (without γ2), giving

term 2 · 3 =E⊥ ·B⊥ + (v ×B) ·B⊥︸ ︷︷ ︸
=0 by (53)

(61)

− 1

c2
E⊥ · (v × E)︸ ︷︷ ︸

=0 by (53)

− 1

c2
(v ×B) · (v × E) (62)

= E⊥ ·B⊥︸ ︷︷ ︸
term 4

− 1

c2
(v ×B) · (v × E)︸ ︷︷ ︸

term 5

. (63)



Now, let’s look at term 5:

− 1

c2
(v ×B) · (v × E) = − 1

c2
(v ×B⊥) · (v × E⊥) by (47) (64)

= − 1

c2
(B⊥ × [v × E⊥]) · v by (35) (65)

= − 1

c2
(v[B⊥ · E⊥︸ ︷︷ ︸

scalar

]− E⊥ [B⊥ · v]︸ ︷︷ ︸
=0 by (41)

) · v by (36) (66)

= −v
2

c2
B⊥ · E⊥. by (38) (67)

Now, plugging (63) and (67) into (60) yields

E′ ·B′ = E‖ ·B‖ + γ2(E⊥ ·B⊥ −
v2

c2
B⊥ · E⊥) (68)

= E‖ ·B‖ + γ2(1− v2

c2
)︸ ︷︷ ︸

=1 by (57)

E⊥ ·B⊥ dot product is commutative (69)

= E‖ ·B‖ + E⊥ ·B⊥ (70)

= E ·B. by (39) (71)

Thus, this dot product is relativistically invariant. QED

b) We start again with the splitting in parallel and perpendicular parts:

(E′)2 − c2(B′)2 = (E′‖ + E′⊥)2 − c2(B′‖ + B′⊥)2 by (39) (72)

= (E′‖)
2 + 2 E′‖ · E′⊥︸ ︷︷ ︸

=0 by (42)

+(E′⊥)2 − c2[(B′‖)2 + 2 B′‖ ·B′⊥︸ ︷︷ ︸
=0 by (42)

+(B′⊥)2] (73)

= (E′‖)
2 + (E′⊥)2︸ ︷︷ ︸
term 1

−c2[(B′‖)2 + (B′⊥)2︸ ︷︷ ︸
term 2

] (74)

Let’s treat the electric part in term 1 first, giving

(E′‖)
2 + (E′⊥)2 = E2

‖ + γ2(E⊥ + [v ×B])2 by (33) (75)

= E2
‖ + γ2(E2

⊥ + 2 E⊥ · [v ×B]︸ ︷︷ ︸
6=0

+ [v ×B]2︸ ︷︷ ︸
=v2B2

⊥ by (56)

) factored out (76)

= E2
‖ + γ2(E2

⊥ + 2E⊥ · [v ×B⊥] + v2B2
⊥). (by (47)) (77)

The very same identities apply to the magnetic field term 2, but the cross pruduct has

a different order and a different sign:

(B′‖)
2 + (B′⊥)2 = B2

‖ + γ2(B⊥ −
1

c2
[v × E])2 by (34) (78)

= B2
‖ + γ2(B2

⊥ −
2

c2
B⊥ · [v × E]︸ ︷︷ ︸

6=0

− 1

c4
[v × E]2︸ ︷︷ ︸

=v2E2
⊥ by (56)

) factored out (79)

= B2
‖ + γ2(B2

⊥ −
2

c2
B⊥ · [v × E⊥] +

v2

c4
E2
⊥). (by (47)) (80)



Below, we will get a term like the following one, which is 0:

E⊥ · [v ×B⊥] + B⊥ · [v × E⊥]︸ ︷︷ ︸
=E⊥·[B⊥×v] by (35)

= E⊥ · [v ×B⊥] + E⊥ · [B⊥ × v]︸ ︷︷ ︸
=−[v×B⊥]

(81)

= 0. (82)

Plugging the partial results for term 2 in (80) and term 1 in (77) into (74) yields

(E′)2 − c2(B′)2 = (E′‖)
2 + (E′⊥)2 − c2[(B′‖)2 + (B′⊥)2] by (74) (83)

= E2
‖ + γ2(E2

⊥ + 2E⊥ · [v ×B⊥] + v2B2
⊥)

− c2B2
‖ − γ2(c2B2

⊥ − 2B⊥ · [v × E⊥] +
v2

c2
E2
⊥) by (77), (80) (84)

= E2
‖ + γ2(1− v2

c2
)︸ ︷︷ ︸

=1 by (57)

E2
⊥ − c2[B2

‖ + γ2(1− v2

c2
)︸ ︷︷ ︸

=1 by (57)

B2
⊥]

+ 2γ2 (E⊥ · [v ×B⊥] + B⊥ · [v × E⊥])︸ ︷︷ ︸
=0 by (82)

rearranged terms

(85)

= E2
‖ + E2

⊥ − c2(B2
‖ + B2

⊥) (86)

= E2 − c2B2. (74) backwards

(87)

Thus, this quantity is relativistically invariant. QED

c) Expanding γ for small velocities, we have

β =
v

c
� 1⇒ γ =

√
1− β2 = 1 +

1

2
β2 +O(β3), (88)

so to leading order in the β-factor we get

E′⊥ = γ (E⊥ + v ×B) by (33) (89)

= E⊥ + v ×B +O(β2), by (88) (90)

B′⊥ = γ

(
B⊥ −

v × E

c2

)
by (34) (91)

= B⊥ −
v × E

c2
+O(β2) by (88) (92)

= B⊥ +O(β), by (88) (93)

Thus, the desired low velocity expressions are

E′ = E + v ×B [ 1 Point(s) ] (94)

B′ = B [ 1 Point(s) ] (95)

but only E′ is of concern here. The quantities discussed now are shown in Fig. 5. In



at restmoving

Figure 5: Left: A point charge q moving with velocity v through the fields E and B measured in

the rest frame K. Right: In the frame K′ moving with v along the point charge, the charge is at

rest feeling only the electric field E′, though the magnetic field B′ is present.

the frame K′ that moves along the point charge with velocity v, the charge is at rest

and feels only an electric field

F = qE′. (96)

This is the definition of the electric field, namely the force felt by a test charge at rest

(i.e., it experiences an electrostatic force). This field E′, however, is now given by the

electric and magnetic field E and B measured in K, in which the point charge moves

with v. It is given by the Lorentz-transformed fields in the low velocity limit (94) as

F = qE′ (97)

= q(E′‖ + E′⊥) (98)

= q
(
E‖ + γ[E⊥ + v ×B]

)
by (33) (99)

≈ q (E + v ×B) . for low velocities by (94) (100)

which is the conventional Lorentz force.

Thus, the Lorentz force is the manifestation for low velocities of a more

complicated force (namely the Minkowski force) from the relativistic

transform behavior of the EM-field.

[ 1 Point(s) ]

— Hand in solutions in tutorial on 30.04.2012 —


