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3 The energy carried by an EM wave travels with the energy velocity ve :=
〈
S
〉
/
〈
w
〉
, where

S denotes the magnitude of the Poynting vector and w the energy density of the wave. For

waves with a definite frequency ω, the cycle-averaged mean values of these quantities in

complex notation are given by〈
w
〉

:=
1

4
Re

(
EE∗

d(ωε)

dω
+ HH∗

d(ωµ)

dω

)
, (1)〈

S
〉

:=
1

2

∣∣Re
(
E×H∗

)∣∣ . (2)

Here, ε ≡ ε0εr(ω), µ ≡ µ0µr(ω), with real and positive εr(ω) and µr(ω).

Now, we consider a linearly polarized modulated plane wave

E(r, t) = E0(r, t)êze
i(kr−ωt) (3)

with ω =
k
√
εµ
, (4)

with a slowly varying envelope E0(r, t) ∈ C, such that we have D(r, t) = ε(ω)E(r, t) and

B(r, t) = µ(ω)H(r, t).

a) Slowly varying means that E0 does not change significantly on the length and time

scales on which the term ei(kr−ωt) oscillates. Explain in detail why, for this case, the

derivatives of E0 can be neglected relatively to the derivatives of ei(kr−ωt) and find

∂tE(r, t) and ∂riE(r, t) in this approximation. Remark: This is known as the widely

used slowly varying envelope approximation (SVEA). [ 2 Point(s) ]

b) Use Maxwell’s equations to show that the corresponding magnetic field H(r, t) in the

SVEA is given by an expression similar to (3) with H0(r, t) as the slowly varying

amplitude of the magnetic field and determine the polarization direction of H(r, t).

Show that H0(r, t) ∝
√

ε(ω)
µ(ω)

E0(r, t) and find the proper proportionality factor in the

SVEA. With this magnetic field, express
〈
S
〉

and
〈
w
〉

in terms of the electric field

envelope E0. [ 4 Point(s) ]
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c) Show that the energy velocity ve can be expressed in terms of d
dω

(ω
√
εµ). Hint: It is

more straightforward to look at
〈
w
〉
/
〈
S
〉

first. [ 3 Point(s) ]

d) Show that the energy velocity equals the group velocity vg = dω
dk

of the wave. Hint:

Recall the derivation rule for inverse functions to compute the inverse of the group

velocity 1/vg. [ 1 Point(s) ]

a) We are given the plane wave

E(r, t) = E0(r, t)︸ ︷︷ ︸
fe

êz ei(kr−ωt)︸ ︷︷ ︸
fc

(5)

with the envelope wave fe and carrier wave fc (for a simple example see Fig. 1). The

full derivative is given by

d(fefc)

dt
=

dfe

dt
fc + fe

dfc

dt
, product rule (6)

where the first term shall be neglected. This is possible if∣∣∣∣∣ dfe
dt
fc

fe
dfc
dt

∣∣∣∣∣ =
|dfe

dt
|

|fe||ω|
(fc is plane wave, see (5)) (7)

� 1, (8)

i.e., if the frequency ω of the carrier wave is so large that for all times we have∣∣∣∣dfe(t)

dt

∣∣∣∣� |fe(t)||ω|. [ 1 Point(s) ] (9)

The slowly varying envelope approximation (SVEA) then consists in omitting the small

term dfe(t)
dt

. In the example of Fig. 1, the SVEA works well for times, where the pre-

requisite (9) is fulfilled. For the spatial derivatives ∂ri , the values of the wavenumbers

ki (i.e., the oscillation frequency in space) for the corresponding directions have to be

used instead of ω (i.e., the oscillation frequency in time).

Now, the total derivatives of the E-field are sums of one term merely depending on the

carrier frequency ω or carrier wave number k and another term merely depending on

the envelope change in time or space and hence being negligible as compared to the

former ones. In particular, there are no mixed terms combining the carrier and the

envelope derivatives. Applying the SVEA gives

∂E

∂t
=
[∂E0

∂t
+ E0 · (−iω)

]
êz exp

(
i(kr− ωt)

)
product rule (10)

≈ −iωE0(r, t)êz exp
(
i(kr− ωt)

)
. [ 0.5 Point(s) ] SVEA by (9) (11)

The same argument can be applied to the spatial derivatives, with ω 7→ ki in (9), giving

∂E

∂ri
=
[∂E0

∂ri
+ E0 · (iki)

]
êz exp

(
i(kr− ωt)

)
product rule (12)

≈ ikiE0(r, t)êz exp
(
i(kr− ωt)

)
. [ 0.5 Point(s) ] SVEA by (9) (13)
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Figure 1: Example for the slowly varying envelope approximation (SVEA) for a harmonic mod-

ulation/envelope with period T on a harmonic carrier wave with period 10T . Left: the full wave

f = fefc, the carrier wave fc and the envelope function fe. Right: First order derivatives with

respect to time of the full wave f , the carrier wave fc only, the envelope function fe only and

the SVEA (df
dt

)SVEA = fe
dfc
dt

. Note the striking similarity of the approximation with the true

derivative of f , except for those times, where the maximal absolute values |dfe
dt
|max coincide with

the zero-crossings of the carrier wave derivative dfc
dt

= 0. At these positions, the envelope appar-

ently changes faster than the carrier, violating the prerequisite (9) for the SVEA. However, the

overall accuracy of this approximation justifies its usage. For the spatial derivatives, the

argument is the same. In practice, the SVEA is often used with broad gaussian pulses, where the

prerequisite is never violated.

b) First we derive the desired relation for the magnetic field. By Maxwell’s Equations, we

have

∂B

∂t
= −∇× E Maxwell’s equations (14)

= −E0∇×
(
êz exp

(
i(kr− ωt)

))
by (13) (15)

=

−iky
ikx
0

E0 exp
(
i(kr− ωt)

)
(16)

We can choose the orientation of our coordinate system freely, thus we align our x-axis

along k, such that

k = kêx. (17)

Now we insert the constitutive relation B(r, t) = µ(ω)H(r, t) into (16). Note that µ



itself does not depend on time, such that we have

∂H

∂t
=

1

µ

∂B

∂t
(18)

=
1

µ
ikE0êy exp

(
i(kr− ωt)

)
by (16) and (17) (19)

(20)

A simple integration combined with the SVEA (recall, E0 still depends on time t) yields

H =
1

µ

(
ik

−iω

)
E0êy exp

(
i(kr− ωt)

)
(21)

= − k

µω
E0êy exp

(
i(kr− ωt)

)
(22)

= −
√
εµ

µ
E0êy exp

(
i(kr− ωt)

)
by (4) (23)

=

√
ε0εr
µ0µr

E0(−êy) exp
(
i(kr− ωt)

)
. reduced fraction (24)

The minus sign is optically annoying and enters due to our choice of coordi-

nates. A plane wave propagating along z and being polarized in x contains

no minus sign. So, we define

H := H0(−êy) exp
(
i(kr− ωt)

)
, (25)

and by (24) we then have

H0(r, t) =

√
ε0εr
µ0µr

E0(r, t), [ 2 Point(s) ] (26)

which is the desired relation between magnetic and electric field.

For the magnitude of the cycle-averaged Poynting vector, we plug (3) and (26) into (2),

where the carrier wave part cancels out and we have〈
S
〉

=
1

2

∣∣∣Re
(√ ε0εr

µ0µr

E0E
∗
0︸ ︷︷ ︸

|E0|2

)∣∣∣ · |êz × (−êy)|︸ ︷︷ ︸
=1

(27)

=
1

2

√
ε0εr
µ0µr

|E0|2, [ 1 Point(s) ] (ε0, µ0, εr, µr are real and positive) (28)

For the cycle averaged energy density, we plug (3) and (26) into (1), where the carrier

wave part cancels out again and we have〈
w
〉

=
1

4
Re
(
|E0|2

d(ωε)

dω
+ |E0|2

ε

µ

d(ωµ)

dω

)
(29)

=
1

4

(d(ωε)

dω
+
ε

µ

d(ωµ)

dω

)
|E0|2. [ 1 Point(s) ] collected E-field, all is real (30)



c) We follow the hint and look at

1

ve

=

〈
w
〉〈

S
〉 (31)

=

[
1

4

(d(ωε)

dω
+
ε

µ

d(ωµ)

dω

)
|E0|2

]/[1

2

√
ε0εr
µ0µr

|E0|2
]

by (28) and (30) (32)

=
1

2

√
µ

ε

(d(ωε)

dω
+
ε

µ

d(ωµ)

dω

)
reduced fraction (33)

=
1

2

(√µ

ε
(ε+ ω

dε

dω
) +

√
ε

µ
(µ+ ω

dµ

dω
)
)

chain rule (34)

=
√
εµ+

ω

2

(√µ

ε

dε

dω
+

√
ε

µ

dµ

dω

)
. rearranged terms (35)

On closer inspection, this last equation turns out to be the derivative given in the

problem text:

d(ω
√
εµ)

dω
=
√
εµ+

ω

2
√
εµ

(µ
dε

dω
+ ε

dµ

dω
) chain rule (36)

=
√
εµ+

ω

2
(

√
µ

ε

dε

dω
+

√
ε

µ

dµ

dω
) (37)

=
1

ve

. by (59) (38)

Finally, this means that

ve =
1

d(ω
√
εµ)

dω

, [ 3 Point(s) ] (39)

which is the wanted expression for the energy velocity.

d) Now, let’s start with a function f(x) and its inverse f−1(y), then we have

x = f−1(f(x)). (40)

Taking the derivative with respect to x on both sides yields

1︸︷︷︸
=dx

dx

=
d
(
f−1(f(x))

)
dx

(41)

=
d
(
f−1(y)

)
dy

∣∣∣
y=f(x)

d
(
f(x)

)
dx

chain rule (42)

⇒ 1(
df
dx

) =
d(f−1)

dy

∣∣∣
y=f(x)

(43)

This means, the derivative of the inverse function is just the inverse of the derivative

of the original function. Recall that f−1(y) = x and y = f(x), so by changing the

notation (not the math involved), we get

1(
df
dx

) =
dx

df
, (44)
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Figure 2: Example for derivatives of inverse functions. The inverse function is just given as the

reflection at the angle bisector, and so is its slope. Here, m = dy
dx

is the slope of the function.

The slope of the inverse function is m′ = dy′

dx′
, and by the reflection procedure we also see that

m′ = 1/m and dx′ = dy and dy′ = dx, hence 1/dy
dx

= dx
dy

, visualizing this derivation rule.

the desired relationship needed. The interpretation is easy (see Fig. 2). df
dx

is the slope

of the function f , meaning a small change dx in the variable amounts to a small change

df in the function values depending on x. However, if the inverse function exists,

there is an unambiguous relation between f and x, such that interpreting f now as the

independent variable, small change in df defines a corresponding small change in dx

that is needed to achieve that particular change in f . These two slopes are simply the

inverses of each other, written out in a formula as (44).

Now we put it all together. For the group velovity vg = ∂ω
∂k

we need ω(k), which is

implicitly given by (4), since the permittivity ε and the permeability µ also depend on

ω. But we can write an explicit function k(ω):

k(ω) = ω
√
ε(ω)µ(ω) by (4) (45)

Then we can calculate

1

vg

=
dk

dω
by (44) (46)

=
d
(
ω
√
ε(ω)µ(ω))

dω
by (45) (47)

=
1

ve

, by (59) (48)

[ 1 Point(s) ]

hence we have

ve = vg, (49)



which was to be shown. QED

4 Effects Of Dispersion

We consider a Gaussian pulse with carrier frequency ω0 = k0c in 1D given by

E(x, t) = E0êz

∫
dk e−α(k−k0)2ei(kx−ω(k)t), α > 0, E0 ∈ C, (50)

which propagates in a dispersive medium. For a wide pulse (αk2
0 � 1), the region of ω(k)

around k0 affects the wave propagation most significantly and we may approximate the

dispersion relation by a truncated Taylor series

ω(k) ' ω0 + ω′ · (k − k0) + ω′′ · (k − k0)
2, (51)

where we used shorthand notations for the derivatives of the dispersion relation evaluated

at k0 as ω0 = ω(k0), ω
′ = ω′(k0) and ω′′ = ω′′(k0).

a) Find the expression for the wave packet in terms of x and t by carrying out the inte-

gration over k in this approximation. [ 3 Point(s) ]

Hint: You will need the value of the integral
∫

dx exp(ax2 + bx),Re(a) < 0. With the

help of the completion of squares, this can be recast into the integral
∫

dx exp(a(x+z0)
2)

with value
√

π
−a , where z0 is a complex number. Express (50) as an integral over

κ = k − k0 and apply this result.

b) In a Gaussian function g(x) = Ae−(x−x0)2/(2σ2), we call A the peak amplitude, σ the

pulse width and x0 the peak position. We assume that we can use the slowly varying

envelope approximation (SVEA) — You do not have to prove that. Then the pulse

intensity I(x, t) ∝ |E(x, t)|2. Interpret the behavior of the peak amplitude, pulse width

and peak position of I in dispersive media for the electric field found in a). [ 2 Point(s) ]

c) For the solution found in a), us a computer algebra program of Your choice and plot

the real part of the electric field (the physical wave) along with the modulus of the

envelope at various times, such that the pulse broadening and pulse motion is clearly

visible. Choose sensible values for the needed parameters and keep the broad pulse

condition αk2
0 � 1 in mind. Based on these plots, explain that the SVEA is applicable

here as discussed in problem 3a) — no calculations are necessary. Create the same

plots for a narrow pulse and explain, why the SVEA fails then. What do You observe

for the time evolution of the carrier wave here? [Remark: The solution of part a) was

derived using the prerequisite αk2
0 � 1, so in principle we are not allowed to drop this

condition all of a sudden. A real narrow pulse would have a slightly different function,

since higher order derivatives of ω were necessary then. However, the principal features

for such a pulse can be seen clearly here as well.] [ 2 BONUS Point(s) ]

a) Firstly, we need the completion of squares which is basically the binomial

identities backwards. In particular, we apply this binomial identity

(A+B)2 = A2 + 2AB +B2 (52)



to the expression

aκ2 + bκ = a( κ2︸︷︷︸
=:A2

+2 κ︸︷︷︸
=:A

b

2a︸︷︷︸
=:B

+
b2

4a2︸︷︷︸
=:B2

)− b2

4a
added 0, rearranged terms (53)

= a(κ+
b

2a
)2 − b2

4a
. by (52) (54)

Secondly, to evaluate the integral (50), we enter the dispersion relation ω(k) by the

approximation (51) and perform a substitution of variables in the same step by

defining a new integration variable κ (which is just k shifted by a constant k0):

κ := k − k0 =⇒ k = κ+ k0, dk = dκ. (55)

Applying this substitution to the dispersion relation (51) gives

ω(k) ≈ ω0 + ω′ · κ+ ω′′ · κ2. (56)

This result and the substitution (55) put in the integral (50) yields

E(x, t) ≈ E0êz

∫
dκ exp

(
− ακ2 + iκx+ ik0x− iω0t− iω′tκ− iω′′tκ2

)
(57)

collecting powers of κ gives

= E0êze
i(k0x−ω0t)

∫
dκ exp

(
−(α + iω′′t)︸ ︷︷ ︸

=a

κ2 + i(x− ω′t)︸ ︷︷ ︸
=b

κ
)

(58)

applying the completion of squares (54) yields

= E0êze
i(k0x−ω0t) exp(− b

2

4a
)

∫
dκ exp

(
a(κ+

b

2a
)2
)

︸ ︷︷ ︸
=
√

π
−a after hint

. (59)

Resubstituting a, b and κ into (59) finally yields the electric field as

E(x, t) =

√
π

α + iω′′t
E0êz exp

(
i(k0x− ω0t)

)
exp

(
− (x− ω′t)2

4(α + iω′′t)

)
. (60) [ 3 Point(s) ]

b) The intensity I(x, t) according to the SVEA is

I ∝ |E|2 (61)

=
|E0|2π
|α + iω′′t|

∣∣∣ exp
(
− (x− ω′t)2

4(α + iω′′t)

)∣∣∣2 by (60)

(62)

all variables are real, and expand the fraction in the exponential:

=
|E0|2π√
α2 + (ω′′t)2

∣∣∣ exp
(
− (x− ω′t)2(α− iω′′t)

4(α + iω′′t)(α− iω′′t)

)∣∣∣2 (63)



exand the exponential

=
|E0|2π√
α2 + (ω′′t)2

∣∣∣ exp
(
− α(x− ω′t)2

4(α2 + (ω′′t)2)

)∣∣∣2 ∣∣∣ exp
(
− i

ω′′t(x− ω′t)2

4(α2 + (ω′′t)2)

)∣∣∣2︸ ︷︷ ︸
=1

(64)

real exponentials are positive, and expand the exponential fraction by 1/α

=
|E0|2π√
α2 + (ω′′t)2

exp
( (x− ω′t)2

2(α + (ω′′t)2/α)

)
. (65)

Comparing this with the general form of a Gaussian function, we find

x0 = ω′t, (66)

σ =

√
α +

(ω′′t)2

α
, (67)

A ∝ 1√
α2 + (ω′′t)2

(
=

1√
ασ

)
. (68)

[ 1 Point(s) ]

This result has the following interpretations (see also Fig. 3):

∗ The center x0 of the pulse intensity moves uniformly (with constant

velocity) with the group velocity ω′ = ∂ω
∂k
|k=k0 .

∗ The pulse width σ of the pulse is initially solely given by α (at t = 0,

makes sense) and broadens with time depending on ω′′.

∗ The pulse amplitude decreases in time as the width increases (also

depending on ω′′).

[ 1 Point(s) ]

c) The plots in Fig. 4 show the time evolution of the broad pulse. The SVEA is applicable,

because the envelope function rises much slower in space (has a flat slope) than the

underlying carrier wave that oscillates rapidly with ω0 = ck0, for c = 1 this is ω0 = k0.

The same is true for the time derivative, if the uniform motion ω′ and the speed of the

pulse broadening ω′′ are also much smaller than ω0.

On the other hand, the narrow pulse is shown in Fig. 5. The derivative of envelope

and carrier waves are of the same order, so the SVEA does not apply here. When

plotting this short pulse for various times t, one can see that the carrier oscillations

become more rapid at the pulse front than compared to the tail. This phenomenon is

called chirp and the pulse is said to be a chirped pulse. This phenomenon is also due

to dispersion.

— Hand in solutions in lecture on 14.05.2012 —
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Figure 3: Example for the (intensity) pulse broadening in dispersive media after (65). For this

example, the values ω′ = 1, ω′′ = 0.2 and α = 1 were chosen. Left: The Gaussian pulse in

space for different times t. The center x0 moves uniformly, while the pulse broadens and decreases

in amplitude. Right: The defining parameters A(t), x0(t) and σ(t) of the pulse and their time

evolution.
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Figure 4: Real part of Ez-field (60) and modulus of envelope for the parameters E0 = α = c = 1,

k0 = ω0 = 10, ω′ = 1, ω′′ = 0.2.
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Figure 5: Same as Fig. 4, but with α = k0 = 1 (broad pulse condition violated). Note the chirp

at advanced times t (see text).


