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12 Hologram Of A Point Scatterer

A point scatterer resides on the z-axis in distance d to a photographic plate at z = 0. A

plane reference wave Ψref(r) = Arefe
−ik0x sin θ interferes on the screen with the object wave

Ψobj(x, y) =
Aobj√

x2+y2+d2
e−ik0
√
x2+y2+d2 , where Aref, Aobj ∈ R. We consider a large distance d

between object and screen.
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a) We want to calculate the interference effects on the screen in the following. Therefore,

find an approximate expression of the object wave Ψobj for large distance d between

object and screen. Explain, what exactly this property means mathematically. Explain,

why this allows You to approximate the square roots by Taylor polynomials then and

why it suffices to expand the amplitude up to zeroth order in x and y (means that the

approximation is independent of x and y), while for the argument of the exponential

the next non-vanishing order of the variables x and y has to be included. [ 2 Point(s) ]

b) The photographic screen will show the interference pattern of the reference and ob-

ject wave after developing, thus acting as an aperture with amplitude transmission
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coefficient T (x, y) = |Ψobj + Ψref|2. Show that

T (x, y) = A2
ref +

A2
obj

d2
+ 2

ArefAobj

d
cos
(
k0d−

k0d sin2 θ

2
+
k0

2d

(
(x− d sin θ)2 + y2

))
. (1)

[ 3 Point(s) ]

c) To reconstruct the image of the point scatterer, we illuminate the developed screen

with an incoming plane wave Ψin = Ψref of the same frequency as the reference wave.

Directly behind the screen, the transmitted field distribution is then given by Ψtrans =

ΨinT (x, y). Find the field Ψtrans(x, y) on the screen for general θ in terms of propagating

waves (express sin and cos by complex exponential functions). Which of these partial

waves reconstructs the image of the point scatterer? What is the physical meaning of

the remaining partial waves?[ 3 Point(s) ]

a) The screen coordinates are given by x and y, where the screen is supposed to have finite

extents along these coordinates, e.g., h and w (not given in the problem text). A large

distance d then means, that d is always much larger than any values for x and y that

we use implicitly to evaluate any of the wave expressions, i.e. d� x, y [ 0.5 Point(s) ].

Now we write the square root as

√
x2 + y2 + d2 = d

√√√√√1 +
x2 + y2

d2︸ ︷︷ ︸
�1

, (2)

which is basically the function f(t) =
√

1 + t2 evaluated for small positive t� 1 only.

Hence, the Taylor expansion around the point 0 is a good approximation to the values

of this function f , which up to first order in the argument gives

√
1 + t ≈ 1 +

1

2
t+O(t2). (Taylor around t0 = 0 for t� 1) (3)

Thus, at t = x2+y2

d2
, we obtain the expansion√

x2 + y2 + d2 ≈ d+
x2 + y2

2d
+O

(
1

d3

)
. (4)

In the expression

Ψobj(x, y) =
Aobj√

x2 + y2 + d2
e−ik0
√
x2+y2+d2 , (5)

we need to expand the square roots now. As discussed in the lecture, it is usually

sufficient to only keep the first term in the amplitude while the phase is much more

sensitive, so there we should also keep the second term as well (Fresnel approximation).

This is because the amplitude variations are not as important as the phase variations for

obtaining an interference pattern (if we approximated the phase to be independent of x

and y, we could not study the interference effects, because we would have ‘approximated

it to death’). Thus, we write

Ψobj(x, y) ≈ Aobj

d
e−ik0de−i

k0
2d

(x2+y2), (6)



which is the desired asymptotic behavior of the object wave on the far away screen that

allows to study the most prominent interference contributions.

b) Starting from the original expression, we find

T (x, y) = |Ψobj + Ψref|2 (7)

= |Ψobj|2 + |Ψref|2 + Ψ∗refΨobj + ΨrefΨ
∗
obj︸ ︷︷ ︸

2Re(ΨrefΨ
∗
obj)

(8)

So, we need to evaluate

2Re
(
ΨrefΨ

∗
obj

)
= 2Re

(
AobjAref

d
e
−ik0

„
x sin θ−d−x

2+y2

2d

«)
(entered given wave expressions)

(9)

= 2
AobjAref

d
cos
(
k0

(
x sin θ − d− x2 + y2

2d

))
(took real part) (10)

= 2
AobjAref

d
cos
(
k0

(
d+

x2 + y2

2d
− x sin θ

))
. (cos(−θ) = cos(θ)) (11)

Adding a 0 allows to recast the expression as

= 2
AobjAref

d
cos

k0d+ k0
x2 + y2

2d
− k0x sin θ+

k0d

2
sin2 θ − k0d

2
sin2 θ︸ ︷︷ ︸

=0

 (12)

rearranging terms gives

= 2
AobjAref

d
cos

k0d−
k0d

2
sin2 θ +

k0

2d

y2 + x2 − 2xd sin θ − d2 sin2 θ︸ ︷︷ ︸
=(x−d sin θ)2

 (13)

= 2
AobjAref

d
cos

(
k0d−

k0d

2
sin2 θ +

k0

2d

(
(x− d sin θ)2 + y2

))
. (14)

We therefore find that the interference pattern is centered around x−d sin θ, as sugested

by looking at the sketch.

Finally, the full expression for T reads

T (x, y) = |Ψobj + Ψref|2 (15)

= |Ψobj|2 + |Ψref|2 + 2Re
(
ΨrefΨ

∗
obj

)
(16)

= (
Aobj

d
)2 + A2

ref + 2
AobjAref

d
cos

(
k0d−

k0d

2
sin2 θ +

k0

2d

(
(x− d sin θ)2 + y2

))
.

(17)



c) So, we write the transmitted field (directly behind the screen) as:

Ψtrans = ΨrefT (x, y) (18)

= Ψref|Ψobj + Ψref|2 (19)

= Ψref

(
|Ψobj|2 + |Ψref|2 + ΨrefΨ

∗
obj + Ψ∗refΨobj

)
(20)

=
(
|Ψobj|2 + |Ψref|2

)
Ψref)︸ ︷︷ ︸

term 1

+ Ψ2
refΨ

∗
obj︸ ︷︷ ︸

term 2

+ |Ψref|2Ψobj︸ ︷︷ ︸
term 3

(21)

From this expression, we find already, that the first two partial wave in term 1 sim-

ply reconstruct the reference beam (with a modified amplitude). Similarly, term 3

corresponds to the object wave (outgoing spherical wave) with a modified amplitude.

To interpret the remaining term 2 we need to investigate a little bit further. Inserting

the full expressions we have

Ψtrans = ΨincT (x, y) = Arefe
−ik0x sin θT (x, y)

with T from above (here we use the simpler form, not the final result) as

T (x, y) = (
Aobj

d
)2 + A2

ref +
AobjAref

d
2 cos

(
k0

(
d+

x2 + y2

2d
− x sin θ

))
(22)

= (
Aobj

d
)2 + A2

ref +
AobjAref

d

(
e

+i

„
k0

„
d+x2+y2

2d
−x sin θ

««
+ e

−i

„
k0

„
d+x2+y2

2d
−x sin θ

««)
,

(23)

we find:

Ψtrans =

(
(
Aobj

d
)2 + A2

ref

)
Arefe

−ik0x sin θ (24)

+
A2

refAobj

d
e−ik0de−ik0

x2+y2

2d eik0x sin θe−ik0x sin θ (25)

+
A2

refAobj

d
eik0deik0

x2+y2

2d e−i2k0x sin θ (26)

=

(
(
Aobj

d
)2 + A2

ref

)
Arefe

−ik0x sin θ term 1 (27)

+
A2

refAobj

d
e−ik0de−ik0

x2+y2

2d term 3 (28)

+
A2

refAobj

d
eik0deik0

(x−2d sin θ)2+y2

2d e−i2k0d sin2 θ term 2 (29)

Summary of the various terms:

1. The image of the reference beam (plane wave pattern on the screen)

2. Incoming spherical wave from position z = +d (in front of the screen) at (x =

2d sin θ, y = 0). This is a real image of the scatterer. In this image, depth informa-

tion is reversed, i.e. bumps are dents and vice versa. That’s why it is also called

the pseudoscopic image (the name denotes the depth reversion). See Fig. ??.

3. Outgoing spherical wave of the point scatterer. This corresponds to a virtual image

of our scatterer at its original position (x = 0, y = 0) in distance z = −d (behind

the screen). This is the hologram.



Thus, (Gabor) holograms simultaneously generate both a virtual and a real image, also

called twin images.
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Figure 1: The hologram of a point and its pseudoscopic image.

13 Optical Coherence Tomography

Optical coherence tomography is a scanning optical microscope with improved vertical res-

olution.

From a source, light with amplitude E0(t) emerges and is split into a reference ray and a

measurement ray. This is focused by a conventional microscope into a sample with mean

refractive index n̄. Er(t) is the amplitude of the reflected reference ray at the position of the

coupler; Esc(z; t) is the amplitude of the light scattered inside the sample at the position of

the coupler. The light is scattered at some particle located at depth z with the real–valued

scattering efficiency asc.

a) Formulate Er(t) and Esc(z; t) in terms of E0(t). Express the detected intensity Idet =〈∣∣Er(t)+Esc(t)
∣∣2〉 in terms of the autocorrelation function Γ(τ) = 〈E0(t)E∗0(t−τ)〉.[ 4 Point(s) ]

b) Assume that E0 has a Gaussian spectral power density with mean angular frequency ω0 and

width ∆ω: ∣∣E0(ω)
∣∣2 = i0 · exp

(
−(ω − ω0)2

2∆ω2

)
(30)

Find
∣∣Γ(τ)

∣∣. [ 3 Point(s) ]



c) Consider a single point scatterer at z = zsc. Calculate Idet as a function of s := 2lr − 2ls
using the results of a) and b). Sketch Idet(s) and annotate the main features. [ 3 Point(s) ]

d) Which features of the interferometer and of Idet(s) have to be known to determine the quan-

tities zsc and asc? How does the light source influence the vertical resolution (z-direction)?

What determines the lateral resolution (x-direction)?[ 2 Point(s) ]

OCT is used in eye diagnostics and more general in biology and medicine as an imaging

method. It allows for good z-resolution (depth) in the images. See Wikipedia for more

details.

a) Er(t) is the light that was reflected at the reference mirror. Hence, by conservation of

energy (intensity is half) it’s delayed by 2lr
c

with a relative amplitude of 1/
√

2:

Er(t) =
1√
2
E0(t− τr), (31)

τr =
2lr
c
. (32)

Analogously, the light scattered inside the sample is delayed by 2ls
c

accounting for the

free space until it enters the sample and 2zn̄
c

accounting for the propagation inside the

sample:

Esc(t) =
1√
2
ascE0(t− τsc), (33)

τsc =
2ls + 2zn̄

c
. (34)

The scattered amplitude is furthermore multiplied with the scattering efficiency.

The intensity at the detector is given by

Idet =
〈∣∣Er(t) + Esc(t)

∣∣2〉 (35)

=
〈(
Er(t) + Esc(t)

)(
E∗r (t) + E∗sc(t)

)〉
(36)

=
〈
Er(t)E

∗
r (t) + Esc(t)E

∗
sc(t) + 2Re

{
Er(t)E

∗
sc(t)

}〉
(37)

=
〈
Er(t)E

∗
r (t)
〉

+
〈
Esc(t)E

∗
sc(t)

〉
+
〈
2Re

{
Er(t)E

∗
sc(t)

}〉
(38)

=
1

2

[〈
E0(t− τr)E

∗
0(t− τr)

〉
+
〈
ascE0(t− τsc)ascE

∗
0(t− τsc)

〉
+ 2Re

{〈
E0(t− τr)ascE

∗
0(t− τsc)

〉}] (39)

=
1

2
[Γ(0) + a2

scΓ(0)] + Re
{
ascΓ(τsc − τr)

}
(40)

The desired result is

Idet =
1

2
(1 + a2

sc)Γ(0) + ascRe
{

Γ
(

2 · lsc − lr + n̄z

c

)}
(41)



b) According to the Wiener-Khintchine theorem discussed in script and lecture, the auto-

correlation function is the Fourier transform of the spectral density S(ω) = |E(ω)|2:

Γ(τ) =

∫ ∞
−∞

dωS(ω) exp(−iωτ) (42)

The spectral density was given in the problem to be a Gaussian with width ∆ω, centered

around ω0:

S(ω) = i0 exp
(
− (ω − ω0)2

2∆ω2

)
(43)

We can use the Fourier table of Bronstein (there is a typo in edition 4, this is the correct

version):

f(ω) =
1√
4πa

e−ω
2/4a ⇒ e−aτ

2

=

∫ ∞
−∞

dτ f(ω)e−iωt, (44)

or, equivalent but more convenient for us here (and I checked it), english Wikipedia:

f(ω) = e−αω
2 ⇒

√
π

α
e−τ

2/4α =

∫ ∞
−∞

dτ f(ω)e−iωτ . (45)

We enter S(ω) into the Fourier integral and get

Γ(τ) =

∫ ∞
−∞

dω i0 exp
(
− (ω − ω0)2

2∆ω2

)
exp(−iωτ) (46)

Using the substitution of variables ω′ = ω − ω0 ⇒ dω′ = dω we obtain

Γ(τ) = i0 exp(−iω0τ)

∫ ∞
−∞

dω′ exp
(
− ω′2

2∆ω2

)
exp(−iω′τ) (47)

In this form, we can apply (45) and identify α = 1
2∆ω2 , wich finally gives

Γ(τ) =
√

2πi0∆ω exp(−iω0τ) exp(−1

2
∆ω2τ 2). (48)

The final desired result is

|Γ(τ)| =
√

2πi0∆ω exp
(
− τ 2∆ω2

2

)
. (49)

c) In terms of s, we find that τ = τr − τl = (s− 2n̄z)/c, hence

Idet =
1

2
(1 + a2

sc)Γ(0) + ascRe
{

Γ
(s− 2n̄z

c

)}
(50)

Inserting the explicit form for Γ(τ) from b) yields

Idet =
√

2πi0∆ω
[1

2
(1 + a2

sc) + ascRe
{

exp
(
− (s− 2n̄z)2∆ω2)

2c2

)
· exp

(
− iω0

(s− 2n̄z)

c

)}]
(51)

=
√

2πi0∆ω
[1

2
(1 + a2

sc) + asc exp
(
− ∆ω2

2c2
(s− 2n̄z)2

)
· cos

(2ω0

c
(s− 2n̄z)

)]
(52)
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Figure 2: Fringe pattern corresponding to part c), with normalized I(s) = Idet(s)/
√

2πi0∆ω.

The sketch (cf. Fig. 2) of Idet as a function of s shows a constant intensity of√
2πi0∆ω(1 + a2

sc) for |s| � 0. Around the position s = 2n̄z, there is a fringe pat-

tern with amplitude
√

2πi0∆ω2asc on top of the constant intensity. The fringe pattern

has a Gaussian envelope and decays with a spread of c
∆ω

.

d) The depth zsc of the scatterer is encoded as the maximum of the Gaussian fringe

envelope in the Idet/s–plot. By smax = 2n̄z, we need the mean refractive index n̄

of the sample, the distance between coupler and sample surface ls and the length of

the reference lr arm and the intensity amplitude i0 in order to determine zsc and asc

quantitatively.

The z-resolution is illustrated in Fig. 3. The scattering efficiency asc enters the detected

intensity as part of the background intensity and as the amplitude of the fringe pattern.

The first occurence does not provide any information because the contributions of

scatterers at different vertical positions in the sample are indistinguishable. Thus,

the fringe amplitude defines the scattering amplitude as long as the fringe patterns of

adjacent scatterers do not overlap (in this case, the problem becomes much harder).

A narrow fringe pattern is desirable because then scatteres can be closer together

without having overlapping fringe patterns. The width of the fringe pattern is the

width of the Gaussian envelope and is reciprocal to the spectral width. This means
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Figure 3: Naive schematic of superposed intensities of two scatterers at z1 = 1 and z2 = 1.5

(interference effects have been neglected, but the basic behavior is visible). Left: small ∆ω,

corresponds to high degree coherent light. Right: large ∆ω, corresponds to low degree of coherence.

The “zero-line” of the intensity of height m(1+a2
sc)/2 is no good measure for asc, since an unkown

number m of scatterers contribute to this value. The Gaussian envelope however is always of

width 2asc, no matter how many scatterers contribute to the signal. Left: High coherence causes

reflected signals to overlap and reduce the z-resolution. Right: Low coherence narrows the fringes

and z-positions of individual scatterers are better discernible. This allows better z-resolution than

conventional microscopy.

that a reduced coherence of the light source improves the vertical resolution.

In the lateral direction, the spectrometer behaves as a conventional microscope and,

thus, it is diffraction-limited. In particular, there is no dependence on the coherence

properties of the light source.

— Hand in solutions in lecture on —


