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Problem set 6 for the course ” Theoretical Optics”
Sample Solutions

Operator Algebra In Quantum Mechanics

Note: All of these exercises can be done in a few lines.

We consider the Pauli matrices
0 1 0 —i 1 0
g1 = (1 0) ) 09 = (1 O > ) 03 = (0 _1) 9 (1)

along with the vectors
1 0
) )

and a scalar product for vectors u,v € C? defined as
(u,v) := Zujvz e C. (3)

The commutator for two matrices A, B is defined as usual as
[A, B] .= AB — BA, (4)
where the standard matrix-matrix product is used.

a) Show that [0’1, 0'2] = 2i03. [1 Point(s)]

b) Show that for arbitrary vectors a, b, ¢, € C* and complex numbers «a, 3 € C the above
scalar product is sesquilinear (“one-and-a-half times linear”), meaning

(c,aa+ fb) = a(c,a) + B(c,b) (5)

and
(aa + Bb, c) = a*(a,c) + (b, c). (6)

Furthermore, show that (a,b) = (b, a)*. [1 Point(s)]
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c) Find the eigenvalues and eigenvectors v and v_ of the matrix oq such that (v, ,v ) =
1 = (v_,v_) . Express these eigenvectors as linear combinations of vq 5. Express vy
as linear combinations of vi. [2 Point(s)]

d) Functions f(M) of matrices M are evaluated by inserting the matrix into the Taylor
series expansion of the desired function. Thus, the result is again a matrix and can be
applied to a vector. Use this information to evaluate the matrix-vector products

exp(ioql) - v 9 (7)

in terms of v4 where 6 is an arbitrary real angle. How does the use of the eigenvectors
of o9 ease the computation? [1 Point(s)]

Now we look at a linear operator 75 in a two-dimensional complex linear space spanned by
state vectors |1), |2). Any arbitrary vector |¥) in that space can be unambiguosly represented
as a linear combination of these two states as |¥) = ay|1) + a2]2), a2 € C.

The operator g9 acts on the basis kets as
G21) = i[2), (8)
022) = —i|1). 9)
For the basis states |1) and |2) (the kets) we define formally linear operators (1| and (2| (the

bras) that map |1) and |2) to scalars (complex numbers). They are fully defined via their
actions and their linearity ((-|-) is called bracket = bra ket):

(i) = (i] - ) = 8y = {1 = (10)

(i| - [elg) + BIK)] = alils) + B(i|k). (linearity)  (11)

For any other states, such as the ket |¥) above, the corresponding bra is defined as (note

0 : (otherwise),

the complex conjugation)
(U] = o (1] + (2] (12)

e) Only by using the algebraic properties given above, find for |¥) as given above the
expectation value

(W]65| W) := (F| - [62|W)]. (13)
[1 Point(s)]

f) Only by using the algebraic properties given above, find for given |¥) the expansion
coefficients a; and s with the help of (1| and (2|. [1 Point(s)]

g) Only by using the algebraic properties given above, show that the states

)=
-

=) = (1) —i2) (15)

are eigenstates of the operator 6, and find the eigenvalues. Determine the normalization
constants Ny € C such that (+|+) =1 = (—|—). Furthermore, show that (+|—) = 0.
Express |1) and |2) as linear combinations of |+) and |—). [2 Point(s)]

(1) +1]2)), (14)



h) Functions f of linear operators are evaluated by inserting the operator into the Taylor
series expansion of the desired function. The result is again a linear operator and can
act on a state. Only by using the algebraic properties given above, evaluate

exp(i620) - i), i=1,2, (16)

in terms of |[4+) and |—) where 6 is an arbitrary real angle (operators commute with
numbers). How does the use of the eigenvectors of 65 ease the computation? [1 Point(s)]

a) We insert the matrices into the commutator

01, )] =oo—0z-on | (17)
“(1o) (o)) 0o 19
(-6 )

— 9 (*;)1 _01) (20)

= 2igs. (21)

b) We insert the vectors intor the definition of the scalar product:

(c,aa+ fgb) = cj(aa; + b)) (22)
=a) cat+fy b (23)
= a(c,a) + f(c,b). (24)
Same goes for the other equation to show:
(va+ Bb,c) =) (aa; + Bb)"c; (25)
=a Z arc; + [ Z bic; (26)
=a’(a,c) + 3%(b,c). (27)

Finally we show

(a,b) = Z a’b; (28)
= i(aib;*)* (29)
= (i a;b;)" (30)
= (Z biai)" (31)

— (b, a)*. (32)



c) We determine the eigenvalues by solving for the zeros of the characteristic polynomial:

A
— 120 (34)

det(gy — A1) = det (_1A _i) (33)

The solutions to this equation and thus, the eigenvalues, are A\, = +£1.

Eigenvectors can be determined as follows: let (Z) be the eigenvector for eigenvalue +1,

then we can deduce the equation
(-0
_ (—b> (36)
SRR <Z> . (37)

Arbitrarily choosing a = 1 determines b = +i. This vector is not yet normalized, so we
plugging this into the scalar product with unknown real normalization N:

(N - (1> , N - (1 )) = N?[-1 + (+i)* - (+i)] (38)

+1 +1
= N?[1+ (i) - (+)] (39)
= N2[1 4 1] ) (40)
= N2 1. (41)

Hence, N = \/LE is the proper normalization and we find the eigenvector v, for eigenvalue

+1 to be
1 /1
_ 42
v ﬁ<+i) (42)

1 .
= E(vl + ivy), (43)

5 ()

1 .
= E(vl —ivy), (45)

The normalized eigenvector v_ for eigenvalue —1 is found in the same fashion.

By inverting these relations we find the decomposition of v; o simply to be

1

Vi = E(VJF +vo), (46)
1

Vo = m(V+ — V,). (47)




d) The series expansion of the single most important function in physics (the exponential

function) is given by

= Z cma™. (short form)
Inserting the matrix o, yields
exp(iogf) = Z Cm (10)™
We apply this to vy in the form of the expansion into eigenvectors v as follows:

: 1 \mm
exp(ioqf) - vio = 7 Z cm(10)"0y (Vv + Vo)

Applying the matrix repeatedly to its eigenvectors yields particularly simple results:

O-gnv-i- = (+1)mv+7

oyv_ = (—1)"v_.

Plugging this into above equation yields

exp(ionf) - vi = % [Z Cn(i0)" (1) v+ (i)™ (—1)" v_]

N J/ N J/

ex;EG) exp?:ie)
= Lty et ),
\/_
exp(iogf) - vy = —=[ev, —e v _].

1\/_

The evaluation for v is analogous.

(48)

(49)

(50)

(56)

(57)

In principle, we are done. However, we can also express the solution in the former basis of

the vectors v; by substituting v in above solutions:

i0 —if

exp(ioqf) - vy vy +e Yv_|

1
_E[

= [e‘e(vl +ivy) + e_ie(vl —ivsy)]

— ol -

[(eie + e*w)vl + i<eia . efie)v2]

o |

= cos(0)vy — sin(0) vy

- ().
exp(ioaf) - v (Sm( )>>

cos(f



The evaluation for v, is analogous. While we are at it, from this form we readily read of the
matrix exp(ioqef) (was not asked for in the problem text):

et~ (0 OY - (D Y

This is a rotation of —@ around the z-axis in the xy-plane. (REMARK FOR TEACHING
ASSISTANTS: Yeah, I should have used exp(—ioaf), stupid mistake...)

The use of eigenvectors lets us replace the complicated matrix oo by a regular number (the
eigenvalue) inside the argument of the function: exp(ioef)vy = exp(i(£1)0)vy, which eases
the evaluation.

Now we basically do the same computations in Dirac notation. In the first part, we
defined a scalar product and showed its algebraic properties, which are those of a
sesquilinearform. Here we defined the algebraic properties of a sesquilinearform
and use it as a scalar product.

e) We begin by evaluating

02| W) = Gofar|1) + azl2)] (def. of arbitrary |U)) (65)
= a103|1) + a02|2) (linear operator) (66)
= i]2) — awill) (definition of &) (67)
= —i(as[1) = [2)). (68)
Now we apply (| as given in the problem text to this state:
[ai (1] + a5(2]] - [=i(a2|1) — au]2))] = —ilefas (1]1) —ajoy (1]2)
N —~ RN ~ “ ~—~— ~——
=(y| =62|W) =1 =0
— oz (2[1) —agon (2]2)] (69)
~—— ——
=0 =1
= —i[ajas — ajoy] (70)
= +i[lagay — (1a3)”] (71)
= 2ilm[oy aj). (72)

The result itself has no deeper meaning, it is the usage of bras and kets that matters here.

f) By projecting (¥| the on [1) we find

(W) = ax (1]1) +az (1]2) . (73)

We find o5 in a similar fashion and thus

a; = (i| D). (74)



g)

These computations can also be done with the scalar product from the first part of the

exercise with orthogonal vectors v; » and an arbitrary linear combination ¥ := ay vy + agvs.

Then we would obtain the expansion coefficients with respect to the orthonormalized basis

as o = (v;, ¥). The algebra is the same in different notation.

Applying the operator gives

1
Gal+) = —(02|1) +162(2)) (linearity)
~—

N2
e

1.
=, U2+ )
= +|+).

In the same fashion we find that |—) is eigenstate for eigenvalue —1.

The normalization is found as

() = 5 (=52 ) + 2
2
— I i) =20 + 22) - T

!
=1.

(78)

(79)

Thus we find Ny = v/2 to be a suitable choice. (REMARK FOR TEACHING ASSISTANTS:
At this point one could give the additional information, that normalized eigenvectors in a

real linear space are determined up to a factor of =1 and in a complex linear space up to a

phase e, thus we could multiply such a phase to our eigenvector and it would still be a valid

solution. However, we use the most simple result of a real positive normalization constant).

In the same fashion, we find N_ = N, =

5

Now, we have to show that

(+-) = =620 = el

1 1

= e 3 I =120 — el — 22
1 1
T NIN.

~ 1 =1]
= 0.

With this result, we also find

(84)

(85)

Since (+| and (—| are two orthonormalized vectors in a two-dimensional linear space with

scalar product (a Hilbert space), they form a basis of that space. Hence, the expansions of



h)

(] in terms of (+| and (—| can be found via projections regarding to the solution of f):

(+1) = 75 (86)
(-1} = 7 )
(+2) = =, (38)
(12 = 2, (59)
and we find
(11 = [+ + (I, (90)
@ = =l - (-1 o1)
= {4 = (- 92)

These are the same results as found in c¢), derived with the help of projections onto basis
vectors.

This is exactly exercise d), with g9 — 09, Vi — |£), v; — [i).

The crucial point is the following: exponential functions of abstract operators are evaluated
by applying it to states expanded in terms of eigenstates of that operator. Then the com-
plicated operator may be substituted by the eigenvalues in the function argument and the
resulting state can be evaluated easily. Hence from now on we are allowed to write

exp(io20)[1) = —fexp(ida)4) + expli60)| ) (93)
= %[exp(—i—i@)\—ﬂ + exp(—if)|—)] (eigenstates of 65)  (94)
= cos(0)|1) — sin(6)[2). (95)

That’s the whole magic of linear algebra in quantum mechanics.

Single Mode Cavity
We consider a quantum cavity along z-direction with a single mode of frequency w and
wavenumber k. The electric field shall be polarized in the z-direction and be in the initial
state

[W(t =0)) =

V2

where ¢ is a given phase and |n) is the Fock state with n photons.

(Jn) +eln+ 1)), (96)

a) Use the time-evolution operator to calculate how this state evolves in time, i.e. find
|\If(t>> [3 Point(s) ]



b) Using the solution from a) calculate the expectation value of the electric field (F,) :=
(U(t)|E,|T(t)) as well as the variance (E2) := (U(t)|E,E,|¥(t)).
Use these results to determine the standard deviation

AB, = (B, — (B)) =\ (B2) — (B.)2 (97)

Show that they have the forms (You may assume Fy € R here)

A~

(E,) = EoN sin(kz) cos(wt — @), (98)
AE, = N|Eysin (kz) [\/2 — cos? (wt — ¢) (99)

and determine the constant A € R. [5 Point(s)]

c) Analogously to b), calculate the standard deviation An for the number operator 7.

[2 Point(s) ]

d) Show that the uncertainties from b) and c) fulfill the following relation (as known from
the lecture):

(An)(AE,) > %]EO sin(k2)| |(af — a)|. (100)

[2 Point(s) ]

To simplify notation in this and the following subexercises, we introduce a rescaled energy
as

~ E 1
En:#:w(n—l—i). (101)

Ht

a) The time-evolution operator is given by e , where H is the Hamilton operator H =

hw (ﬁ + %) Thus, we need to evaluate

W(1)) = e 7| W(t = 0)) (102)
1 i 7 . i7
= — | e " n) +e? e n | n 4 1) (by (96€)), linear operator) (103)
\/§ —— ——

term 1 term 2

We evaluate term 1, term 2 is analogous.

Though the evaluation of functions of operators should have already been dis-
cussed at length in the lecture, it is quite a novel concept for students and should
be again explained in the problem session if possible.

A function of an operator is defined via the series representation of that function, for the
exponential function, the Hamiltonian and the given Fock state it is

- 2 (—LtHt)™
e wltp) = Z ( F;n' ) In) (Def. of exp(-)) (104)
m=0 )
P (=ipm N
_ Z ( h ) H™|n) . (Op. H commutes with numbers m, i, i, t) (105)

to evaluate



In order to compute the exponential, we need to evaluate the repeated application of the
Hamiltonian on the Fock state |n):

. 1
H|n) = hw n +3 |n) (Single mode Hamiltonian) (106)
operator
1 :
= hw ( n +§) n) (eigenstate of number operator) (107)
number

= E,|n). (definition of (101])) (108)
Since the Hamiltonian commutes with the numbers E,,, we immediately have
H™|n) = E™|n). (109)

With this, we can write

e_ﬁmlm = Z (_jﬁ)mE;"\n) (by (103)), (109)) (110)

m=0
. (—iE, )"
= Z QW} (rearranged terms) (111)
m!
m=0
= e 1 Fnl|p). (def. of exp(-)) (112)

In summary, if an operator function is applied to an eigenstate of the operator
involved, one may substitute the operator by the particular eigenvalue in the
function argument. This should be accompanied by a justification, e.g. ”because
state is eigenstate of operator”. The detailed computation need not be repeated
then.

Finally, we can solve this exercise in quite a few lines:

W(t)) = e w1 (¢ = 0)) (113)

(e_%mm) + ei‘be_%mm + 1)) (by (9€]), linear operator) (114)

Sl

(e—%Ent|n> + it Enritly 4 1>) (by (112)) (115)

b) We need to note some preliminary results first. We recall the action of the laddder
operators on Fock states:

aln) = v/njn — 1), (116)
a'ln) = vn + 1|n + 1). (117)

The electric field operator is given as

E, = Eysin(kz) (a' +a) . (118)



In the following, the abbreviations of pure phase factors

¢y 1= e n P, (119)
c:=e? (120)
will be quite useful.

The energy difference between two neighboring Fock states is

Eni1 — By = hw, (by (101)) (121)

which we use to evaluate the products

i

i _ i s
ChCpyr = e abntemnBnil — gmiwt (122)

Cp1Cn = (C;Cn—l—l)* = et (123)

Now we can start to actually evaluate the expectation values. We first evaluate
a|(t)) and af|¥(t)):

1
alv(t)) = 7 (cna|n) + ccpiraln + 1)),
1
— 7 (cn\/ﬁ|n —1) + ccpprvVn + 1|n)> ,
and
AT (1) = — (ol n) + cnrtln + 1)),
V2

1

<cn\/n +1n+1) + ceppvVn+2in + 2)) )

S

2

Together, we can evaluate

E|U(t)) = % sin(kz) [cn\/ﬁ|n — 1) + ccp1Vn + 1in)
+ cvVn+1n+1) +ccn+1\/n+2|n+2)} (124)
= % sin(kz) [cn <\/ﬁ|n -1 +vn+1ln+ 1>>

¥ cens (\/n——l—1]n> +Vnt2n+ 2))} (125)

The expectation value projects out only the contributions of (n| and (n + 1| and discards



the rest:

()| BV (1)) = —= [ (n] + ¢y (n + 1]] E[¥(2))

E
= sin(kz) | e enir Vo + 1 (n|n)
2 —— ——

—e—iwt =1

+ e ecpvVn+1(n+1n+1)
——

—_——
—etHiwt =1
Eq . .
= —+/n+ 1sin(kz ce Wt FelWt
. (ko) | et + et
:e*i(‘l-’t*‘ﬁ) :e‘H(Wt*d’)
N -~ J
=2cos(-)

= Eyvn + 1sin(kz) cos(wt — ¢).
For the variance we use

E,E,|U(t)) = %sin(k‘z)ﬁ’x [cn <\/ﬁ|n — D +vVn+1n+ 1)) (by ([125))
+ cenps (VA Tn) + Vit 2n +2))|
- 5_85 sin?(kz) [cn <\/ﬁdT|n — 1) +vn+1al|n + 1>>
+ (\/ﬁam — 1) +Vn + lajn + 1>)

+ cCpiq (\/n +1a'|n) + vn + 2a'|n + 2))

+ cenp (Vi + Taln) v+ 2aln +2) )| (by (I18))
= 5—% sin®(kz) [cn (ﬁ\/ﬁ\n) +vVn+ 1vn +2|n + 2))

+ ¢, (ﬁ\/n —1n—=2)+vn+1vn+ 1|n>)
+ CCpit (\/TH— IWn+1n+1)+vn+2vVn+3n+ 3))
+ Cent <\/n FIvaln —1) + Vo + 2V + 2n + 1>>} (by (T16))



Similarly to the expectation value of E, we find for the variance

(WO BB U(0) = 20 s (h2) [ehln] + ey (04 1]

X [cn (ﬁ\/ﬁym +vVn+1vVn+2n+ 2})

+ ¢ (ﬁﬁm —2) + \/n——i-lx/n—-l-l]n))

+ CCnt1 (x/n—Jrlx/n—Hln +1)+vVn+2vVn+3n+ 3>>
+ CCpi1 (\/n—Jrl\/ﬂn — 1) +vVn+2vVn+2n+ 1))]

= %g sin®(kz) |n (n|n) +(n + 1) (n|n)
~—— —~

=1 =1

+(n+1)(n+1n+1)+(n+2)(n+1n+1)

=1 =1

ES o
=~ sin (kz) (4n +4)
(n

+ 1) B3 sin?(k2).

For the standard deviation we therefore find

AE, = \/(E2) — (E.)?

= \/Q(n +1)E2sin®(k2) — [E2(n + 1) sin®(k2) cos?(wt — ¢)]  (entered results)
= V/n + 1|Eysin (k2) [\/2 — cos? (wt — ¢)

These are the forms that were wanted with N = v/n + 1.

c) As above, we evalute

and

Recalling that (n|n)

ﬁw@»—ﬁJ%@Mm+m%Hm+1» (126)
= % (enn|n) + cepyr(n+ 1)|n + 1)) (127)
ﬁm@@>:m%%@mm+¢%ﬂm+1» (128)
- % (can®|n) + cepyr(n+ 1) n + 1)) . (129)

=1 = (n+ 1n + 1) and phases ¢, ¢,, ¢,+1 all cancel to 1 in the

expectation value due to the use of complex conjugates, we find

@a:%m+@H4p:n+% (130)



and

(R?) = % (n®+(n+1)°) =n"+n+ % (131)

Plugging these results into the defintion of the spread, we find

An = \/(#2) — ()2 (132)
1 1
= |3 n2+ m+12| —(n+ 5)2 (133)
=n2+2n+1 —
=n24n+tz
2 4
1 1
— /= 135
1= 35 (135)

d) In order to check the inequality, we need to evaluate |(a" — a)|. So, using the results from
b), we find
1
7 [cn\/n +1n+1) + ceppivVn +2|n + 2)
—cav/nln — 1) — cepi1vVn + 1|n>]
1
=— [cn (\/n +1ln+1) —/n|n — 1))
V2
+ cCpi1 (\/n +2n+2) —vVn+ 1\n>>] :

(a" —a) [(t)) =

SO

At A __ iwt | —i¢p _ —iwt i
(W) (a' —a) [w(t)) 2\/n—i—1 e (n+1n+1)—e e’ (n|n)

< =1 = =1
-

=ivn + lsin (wt — @) .

With the solutions from the previous subexercises, the left hand side of the inequality is

g

=2isin(-)

given by

(An)(AE,) = %]EO sin (k) | v/n + 11/2 — cos? (wt — ¢) . (136)

-

>|(at—a)|

Thus, we conclude that the inequality to show holds true as long as

V2 — cos? (wt — ¢) > |sin (wt — )|, (137)

which can be rewritten as (but the argument is also already applicable to the form above)

V14 sin? (wt — ¢) > [sin (wt — 6) |. (138)



This inequality is certainly fulfilled, since the left-hand side yields values in [1,2] while the
right-hand side can only have values in [0, 1].

— Hand in solutions in lecture on —



