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Problem set 8 for the course ”Theoretical Optics”

18 All points will count as extra points.

Diffraction at a Metallic Cylinder

We consider a monochromatic plane wave Ein(x, t) =

Einêze
i(kx−ωt) that is diffracted at a perfectly conducting

cylinder with radius a. The cylinder axis is oriented along

the z-axis and infinitely extended along the z-direction

(e.g., a very long, thin metallic wire). The symmetry

of the problem favors a treatment in cylindrical coordi-

nates, i.e., the electric field is generally written as E(r, t) =

Eρêρ + Eϕêϕ + Ezêz and the H-field accordingly. How-

ever, the diffracted field will keep its polarization state,

so E ∼ Ez(ρ, ϕ, z, t)êz. The total field is the sum of the

incoming and scattered field: Etot = Ein + Esc.

a) Use Maxwell’s equations in cylindrical coordinates to show that for z-polarized light

Hρ =

√
ε0ε

µ0µ

1

ikρ

∂Ez
∂ϕ

and Hϕ = −
√

ε0ε

µ0µ

1

ik

∂Ez
∂ρ

(1)

holds. [ 2 Point(s) ]

b) The z-component of the scattered field Esc = Etot − Ein obeys the wave equation in

cylindrical coordinates (
∂2
ρ +

1

ρ
∂ρ +

1

ρ2
∂2
ϕ + k2

)
Esc = 0. (2)

This equation can be decoupled by a separation ansatz Esc = R(ρ)Φ(ϕ), which yields

two separate differential equations, one for R(ρ) and one for Φ(ϕ). Those equations are

coupled via a constant, which we denote by m2. Argue, why this separation is allowed,

state the two differential equations and find the general solution for Φ(ϕ). Further,

show that m must be an integer. [ 4 Point(s) ]

c) Show that the differential equation for R can be recast into the form of the Bessel

equation

x2 ∂
2

∂x2
R̃(x) + x

∂

∂x
R̃(x) +

(
x2 −m2

)
R̃(x) = 0 (3)

and give the correct expression for R̃ and x.[ 2 Point(s) ]
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d) In the far field limit kρ → ∞, the scattered field must have the form of an outgoing

cylindrical wave, i.e.,

Esc ∼ f(ϕ)
eikρ

√
kρ

for kρ→∞. (4)

The outward propagating solutions to (3) satisfying the boundary condition (4) are

given by the complex valued Hankel functions of the first kind H
(1)
m , which have the

proper asymptotics far away from the cylinder:

H(1)
m (kρ) '

√
2

πkρ
ei(kρ−mπ

2
−π

4
) for kρ� 1. (5)

The general outward propagating solution to (2) is given by

Esc(ρ, ϕ) = Ein

+∞∑
m=−∞

AmH
(1)
m (kρ)eimϕ, with Am ∈ C. (6)

With the help of (5) and (4), find the expression for f(ϕ) and show that

Am = −im
Jm(ka)

H
(1)
m (ka)

. (7)

Here, Jm is a Bessel function of the first kind. [ 4 Point(s) ]

Hint: Be aware of the perfectly conducting boundary condition at the cylinder surface,

i.e., Etot(ρ = a) = 0. This gives you an equation for all the Am, from which the

coefficients can be projected out by multiplying with e−im′ϕ and integrating from 0 to

2π. Make use of the formulae provided at the end of this problem set.

e) Show that in the far field limit the magnetic field Hsc only has a relevant transversal

component Hϕ and that the cycle-averged Poynting vector Ssc is consequently given by

Ssc = −1

2
Re(Esc,zH

∗
sc,ϕ)êρ. [ 5 Point(s) ] (8)

Apply the asymptotic expansion after taking any derivatives! Hint: Show that Hρ

vanishes faster than Hϕ for kρ→∞. Make use of the formulae provided at the end of

this problem set.

d) Now that we know the Poynting vector of the scattered field, we can compute the

scattering cross section per height ∂σ
∂z

given by

∂σ

∂z
=

1

|Sin|

∫ 2π

0

Ssc · êρρdϕ. (9)

This is a measure for the amount of the incident plane wave’s power that is scattered

into the outgoing cylindrical wave. Show that it has the value

4

k

+∞∑
m=−∞

∣∣∣∣∣ Jm(ka)

H
(1)
m (ka)

∣∣∣∣∣
2

(10)

in the far field limit. [ 3 Point(s) ]



Useful formulae:

2π∫
0

ei(m−m′)φdφ = 2πδmm′ with δmm′ =

{
1 : m = m′,

0 : otherwise,
(11)

Jn(x) =
(−i)n

2π

2π∫
0

ei(x cosφ−nφ)dφ, (12)

2
d

dx
H(1)
m (x) = H

(1)
m−1(x)−H(1)

m+1(x). (13)

— Hand in solutions in lecture on 08.07.2012 —


