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Problem set 8 for the course ”Theoretical Optics”
Sample Solutions

18 All points will count as extra points.

Diffraction at a Metallic Cylinder

We consider a monochromatic plane wave Ein(x, t) =

Einêze
i(kx−ωt) that is diffracted at a perfectly conducting

cylinder with radius a. The cylinder axis is oriented along

the z-axis and infinitely extended along the z-direction

(e.g., a very long, thin metallic wire). The symmetry

of the problem favors a treatment in cylindrical coordi-

nates, i.e., the electric field is generally written as E(r, t) =

Eρêρ + Eϕêϕ + Ezêz and the H-field accordingly. How-

ever, the diffracted field will keep its polarization state,

so E ∼ Ez(ρ, ϕ, z, t)êz. The total field is the sum of the

incoming and scattered field: Etot = Ein + Esc.

a) Use Maxwell’s equations in cylindrical coordinates to show that for z-polarized light

Hρ =

√
ε0ε

µ0µ

1

ikρ

∂Ez
∂ϕ

and Hϕ = −
√

ε0ε

µ0µ

1

ik

∂Ez
∂ρ

(1)

holds. [ 2 Point(s) ]

b) The z-component of the scattered field Esc = Etot − Ein obeys the wave equation in

cylindrical coordinates (
∂2
ρ +

1

ρ
∂ρ +

1

ρ2
∂2
ϕ + k2

)
Esc = 0. (2)

This equation can be decoupled by a separation ansatz Esc = R(ρ)Φ(ϕ), which yields

two separate differential equations, one for R(ρ) and one for Φ(ϕ). Those equations are

coupled via a constant, which we denote by m2. Argue, why this separation is allowed,

state the two differential equations and find the general solution for Φ(ϕ). Further,

show that m must be an integer. [ 4 Point(s) ]

c) Show that the differential equation for R can be recast into the form of the Bessel

equation

x2 ∂
2

∂x2
R̃(x) + x

∂

∂x
R̃(x) +

(
x2 −m2

)
R̃(x) = 0 (3)

and give the correct expression for R̃ and x.[ 2 Point(s) ]
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d) In the far field limit kρ → ∞, the scattered field must have the form of an outgoing

cylindrical wave, i.e.,

Esc ∼ f(ϕ)
eikρ

√
kρ

for kρ→∞. (4)

The outward propagating solutions to (??) satisfying the boundary condition (??) are

given by the complex valued Hankel functions of the first kind H
(1)
m , which have the

proper asymptotics far away from the cylinder:

H(1)
m (kρ) '

√
2

πkρ
ei(kρ−mπ

2
−π

4
) for kρ� 1. (5)

The general outward propagating solution to (??) is given by

Esc(ρ, ϕ) = Ein

+∞∑
m=−∞

AmH
(1)
m (kρ)eimϕ, with Am ∈ C. (6)

With the help of (??) and (??), find the expression for f(ϕ) and show that

Am = −im
Jm(ka)

H
(1)
m (ka)

. (7)

Here, Jm is a Bessel function of the first kind. [ 4 Point(s) ]

Hint: Be aware of the perfectly conducting boundary condition at the cylinder surface,

i.e., Etot(ρ = a) = 0. This gives you an equation for all the Am, from which the

coefficients can be projected out by multiplying with e−im′ϕ and integrating from 0 to

2π. Make use of the formulae provided at the end of this problem set.

e) Show that in the far field limit the magnetic field Hsc only has a relevant transversal

component Hϕ and that the cycle-averged Poynting vector Ssc is consequently given by

Ssc = −1

2
Re(Esc,zH

∗
sc,ϕ)êρ. [ 5 Point(s) ] (8)

Apply the asymptotic expansion after taking any derivatives! Hint: Show that Hρ

vanishes faster than Hϕ for kρ→∞. Make use of the formulae provided at the end of

this problem set.

d) Now that we know the Poynting vector of the scattered field, we can compute the

scattering cross section per height ∂σ
∂z

given by

∂σ

∂z
=

1

|Sin|

∫ 2π

0

Ssc · êρρdϕ. (9)

This is a measure for the amount of the incident plane wave’s power that is scattered

into the outgoing cylindrical wave. Show that it has the value

4

k

+∞∑
m=−∞

∣∣∣∣∣ Jm(ka)

H
(1)
m (ka)

∣∣∣∣∣
2

(10)

in the far field limit. [ 3 Point(s) ]



First we note the dispersion relation

ω =
k

√
µ0µε0ε

. (11)

a) The curl-operator in cylindrical coordinates is given by (any standard text book on

theoretical electrodynamics features this in an appendix or the first/last page of the

hard cover, see, e.g. Griffiths, Introduction to electrodynamics)

∇×E =

[
1

ρ

∂

∂ϕ
Ez −

∂

∂z
Eϕ

]
êρ+

[
∂

∂z
Eρ −

∂

∂ρ
Ez

]
êϕ+

1

ρ

[
∂

∂ρ
(ρEϕ)− ∂

∂ϕ
Eρ

]
êz. (12)

Since only Ez is non-zero, the curl above simplifies to

∇× E =
1

ρ

∂

∂ϕ
Ezêρ −

∂

∂ρ
Ezêϕ. (13)

From Maxwell’s curl equation

− µ0µ
∂

∂t
H = ∇× E (14)

we therefore find by inserting an appropriate plane wave ansatz (H(r, t) = H0ei(kr−ωt),

we have seen this several times now) that

iωµ0µH(r, t) = ∇× E(r, t) (by (??)) (15)

=
1

ρ

∂

∂ϕ
Ezêρ −

∂

∂ρ
Ezêϕ. (by (??)) (16)

Thus we have that

H(r, t) =
1

iωµ0µ

(
1

ρ

∂

∂ϕ
Ezêρ −

∂

∂ρ
Ezêϕ

)
(17)

= Hρêρ −Hϕêϕ. (18)

Thus we can read off the components

Hρ =
1

iωµ0µ

1

ρ

∂

∂ϕ
Ez (19)

=

√
ε0ε

µ0µ

1

ikρ

∂

∂ϕ
Ez, (by (??)) (20)

Hϕ = − 1

iωµ0µ

∂

∂ρ
Ez (21)

= −
√

ε0ε

µ0µ

1

ik

∂

∂ρ
Ez. (by (??)) (22)

This is the desired result.



b) Inserting the separation ansatz Esc = R(ρ)Φ(ϕ) into the wave equation (??) yields

R′′Φ +
1

ρ
R′Φ +

1

ρ2
RΦ′′ + k2RΦ = 0, (23)

where the prime ′ denotes a derivative with respect to the argument. Multiplication

with ρ2

RΦ
then results in

ρ2R
′′(ρ)

R(ρ)
+ ρ

R′(ρ)

R(ρ)
+ ρ2k2 = −Φ′′(ϕ)

Φ(ϕ)
. (24)

The left hand side of this equation depends solely on the variable spatial ρ (k is a

fixed parameter) and the right hand side depends only on the spatial variable ϕ. ρ

and ϕ may take on all their respective allowed values indepently from one another,

hereby inevitably changeing the values of the left hand side or right hand side. In order

to be able to fulfill this equation for all ρ and ϕ then, both sides must be constant

(independent of ρ and ϕ) and equal. As the problem text suggests, we denote this

constant by m2, and hence the two equations decouple and we have

Φ′′

Φ
= −m2, (25)

ρ2R
′′

R
+ ρ

R′

R
+ ρ2k2 = m2. (26)

For now, m is an unknown constant. Rewriting the first equation as

Φ′′ +m2Φ = 0, (27)

we readily find the solution

Φ(ϕ) = eimϕ. (28)

Up to this point, m is still an arbitrary number.

Now ϕ is an angle, and a 360◦ rotation of the system around the z-axis creates the

same pysical setup with the same solutions. This leads to the condition

Φ(ϕ+ 2π)
!

= Φ(ϕ). (29)

Inserting this condition into the general solution (??), we find

eim(ϕ+2π) !
= eimϕ, (30)

and after dividing by eimϕ we end up with

eim2π !
= 1. (31)

This equation can only be fulfilled, if m ∈ Z. Note that this is a typical quan-

tization condition arising from physical boundary conditions of differen-

tial equations. Nothing ’quantum’ has happened here, this is all classical

physics.



c) Multiplying the second ODE (??) by R, we find

ρ2 ∂
2

∂ρ2
R(ρ) + ρ

∂

∂ρ
R(ρ) +

(
ρ2k2 −m2

)
R(ρ) = 0. (32)

Now we introduce the function R̃ as

R̃ : x 7→ R̃(x), (33)

R̃(kρ) := R(ρ), (34)

which defines the substitution of variable

x := kρ. (35)

Now we have to replace the derivatives of R by those of R̃:

(
∂

∂ρ
)nR(ρ) = (

∂

∂ρ
)n
[
R̃(kρ)

]
(by (??)) (36)

= (
∂

∂x
)nR̃(x)|x=kρk

n (chain rule) (37)

We substitute this result into (??) and obtain

(kρ)2 ∂
2

∂x2
R̃(x)|x=kρ + (kρ)

∂

∂x
R̃(x)|x=kρ +

(
ρ2k2 −m2

)
R(x)|x=kρ = 0. (38)

Applying the subsitution (??) yields the desired Bessel equation for R̃(x):

x2 ∂
2

∂x2
R̃(x) + x

∂

∂x
R̃(x) +

(
x2 −m2

)
R̃(x) = 0. (39)

This was to show.

d) In order to exploit the outgoing wave boundary condition (??), we have to look at the

asymptotic form of the general solution for kρ → ∞, hence we substitute (??) into

(??), which yields

Esc(ρ, ϕ) = Ein

+∞∑
m=−∞

Am

√
2

πkρ
ei(kρ−mπ

2
−π

4
)eimϕ (by (??)) and (??) (40)

=
eikρ

√
ρk

Ein

√
2

π

+∞∑
m=−∞

Ame
i(mϕ−mπ

2
−π

4
)

︸ ︷︷ ︸
=:f(ϕ)

, (rearranged terms) (41)

so we can already identify the function f(ϕ) from (??) as

f(ϕ) = Ein

√
2

π

+∞∑
m=−∞

Ame
i(mϕ−mπ

2
−π

4
). (42)

To find an expression for the Am, we exploit the perfect electrical conductor (PEC)

boundary condition on the surface of the cylinder (ρ = a), which yields

Etot(ρ = a, ϕ) = Ein(ρ = a, ϕ) + Escat(ρ = a, ϕ)
!

= 0. (43)



The first equality stems from the continuity of the fields, the second from the PEC. We

insert the incoming plane wave (as given in the problem text) and the form of the general

solution of the scattered field (??). Note that we are not in the asymptotic regime

(far away from the cylinder) but in the vicinity of the cylinder. Therefore

we have to use the full Hankel functions here. Additionally, this equation is

valid only for the cylinder surface x = a cosϕ, which we use to write (??) as

0 = Ein

(
eikx +

+∞∑
m=−∞

AmH
(1)
m (ka)eimϕ

)
((??) with incoming plane wave and (??))

(44)

= Ein

(
eika cosϕ +

+∞∑
m=−∞

AmH
(1)
m (ka)eimϕ

)
. (x = a cosϕ) (45)

The incoming amplitude Ein is irrelevant for the boundary condition and has been

divided out of the equation in the following. As hinted, we project out the coefficients

Am by exploiting the orthogonality of the complex exponential functions as follows. We

multiply (??) by e−im′ϕ and integrate over ϕ to find

0 =

∫ 2π

0

(
eika cosϕ−m′ϕ +

+∞∑
m=−∞

AmH
(1)
m (ka)ei(m−m′)ϕ

)
dϕ (46)

=

∫ 2π

0

eika cosϕ−m′ϕdϕ︸ ︷︷ ︸
= 2π

(−i)m′
Jm′ (ka) by (??)

+
+∞∑

m=−∞

AmH
(1)
m (ka)

∫ 2π

0

ei(m−m′)ϕdϕ︸ ︷︷ ︸
=2πδmm′ by (??)

. (integral is linear operator)

(47)

Performing the sum and exploiting the Kroneckerdelta of (??), we end up with

0 =
2π

(−i)m
Jm(ka) + 2πAmH

(1)
m (ka), (48)

which yields the solution

Am = −im
Jm(ka)

H
(1)
m (ka)

= im+2 Jm(ka)

H
(1)
m (ka)

. (49)

These are the desired coefficients.

e) The cycle-averaged Poyting vector is given by S = 1
2
Re(E ×H∗). In cylindrical coor-

dinates, we can write the cross product explicitly as

E×H∗ =
(
EϕH

∗
z − EzH∗ϕ

)
êρ +

(
EzH

∗
ρ − EρH∗z

)
êϕ +

(
EρH

∗
ϕ − EϕH∗ρ

)
êz. (50)

Since the electric field only has a z-component, we are left with two terms (analogous

to part a):

E×H∗ = −EzH∗ϕêρ + EzH
∗
ρ êϕ. (51)



First, we consider the ρ-component of the scattered magnetic field Hsc
ρ , given by (??)

of part a)

Hsc
ρ =

√
ε0ε

µ0µ

1

ikρ

∂Esc
z

∂ϕ
(by (??)) (52)

= Ein

√
ε0ε

µ0µ

1

ikρ

∂

∂ϕ

(∑
m

AmH
(1)
m (kρ)eimϕ

)
(by (??)) (53)

= Ein

√
ε0ε

µ0µ

1

kρ

(∑
m

mAmH
(1)
m (kρ)eimϕ

)
(performed derivative by ϕ) (54)

Inserting the asymptotic expansion (??) yields the field for kρ� 1:

Hsc
ρ ' Ein

√
ε0ε

µ0µ
(kρ)−

3
2

√
2

π

(∑
m

mAmei(mϕ−mπ
2
−π

4 )

)
eikρ. (55)

Similarly, we evaluate Hsc,ϕ

Hsc
ϕ = −

√
ε0ε

µ0µ

1

ik

∂Esc,z

∂ρ
(by (??)) (56)

= −
√

ε0ε

µ0µ

Ein

ik

(∑
m

Am
∂

∂ρ
H(1)
m (kρ)eimϕ

)
(by (??)) (57)

= −
√

ε0ε

µ0µ

Ein

i

(∑
m

Am
∂

∂kρ
H(1)
m (kρ)eimϕ

)
(rearranged k) (58)

= −
√

ε0ε

µ0µ

Ein

i

(∑
m

Am
1

2

(
H

(1)
m−1(kρ)−H(1)

m+1(kρ)
)

eimϕ

)
(applied (??)) (59)

' −
√

ε0ε

µ0µ

Ein

i

∑
m

1

2
Am

√
2

πkρ

(
ei
π
2 − e−i

π
2

)︸ ︷︷ ︸
=2i

ei(mϕ+kρ−mπ
2
−π

4 )

 (applied (??))

(60)

= −
√

ε0ε

µ0µ
Ein

√
2

πkρ

(∑
m

Amei(mϕ−mπ
2
−π

4 )

)
eikρ. (61)

The problem text suggests to compare the magnitudes of the magnetic field components

with each other, so we have a look at the ratio

Hsc
ρ

Hsc
ϕ

=
(kρ)−

3
2

(kρ)−
1
2

(
−
∑

mmAmeim(ϕ−π2 )∑
mAmeim(ϕ−π2 )

)
︸ ︷︷ ︸

=:α

(62)

=
1

kρ
α→ 0 for kρ→∞. (63)

So since α is just some constant, the magnitude of the ρ-component of the magnetic

field is much smaller than the magnitude of the ϕ-component, i.e., it is suppressed by

a factor 1
kρ

, and can be neglected in the far field limit.



Therefore, the Poynting vector contains only the êρ part of (??), giving the final ex-

pression for the cycle averaged Poynting vector as

Ssc = −1

2
Re(Esc,zH

∗
sc,ϕ)êρ. (64)

This was to be shown.

Remark for teaching assistants: One can also take the ρ-derivative after the

asymptotic expansion. This simplifies the calculations, therefore this method was ex-

plicitly excluded in the problem text.

e) (Remark for teaching assistants: Since we deal with an idealized infinitely ex-

tended system here, the regular total scattering cross section σ would be infinitely large

as well. That’s why we deal with ∂σ
∂z

here, which has the dimension of length (instead

of area, as σ has) and is a finite quantity.)

To calculate the cross section, we need the cycle-averaged Poynting vector of the incom-

ing and the scattered wave. The absolute value of the cycle-averaged Poyting vector of

the incoming plane wave is well known and given by

|Sin| =
1

2

√
ε0/µ0|Ein|2. (65)

Combining (??) and (??), we we can express the product from (??) as

Esc,zH
∗
sc,ϕ =

eikρ

√
ρk
Ein

√
2

π

∑
m

Ame
i(mϕ−mπ

2
−π

4
)

×

(
−
√

ε0ε

µ0µ
Ein

√
2

πkρ

(∑
m

Amei(mϕ−mπ
2
−π

4 )

)
eikρ

)∗
(66)

= −|Ein|2
2

πkρ

√
ε0

µ0

∑
m,m′

AmA
∗
m′e

i(m−m′)ϕei(m−m′)π
2 (67)

Dividing by (??) and putting this into (??) yields (note the cancellation of the minus

sign)

∂σ

∂z
=

2

πk

∑
m,m′

AmA
∗
m′e

i(m−m′)π
2

∫ 2π

0

ei(m−m′)ϕdϕ︸ ︷︷ ︸
=2πδmm′ by (??)

(68)

=
4

k

∑
m

|Am|2 (evaluated sum and Kroneckerdelta)

(69)

=
4

k

∑
m

∣∣∣∣∣ Jm(ka)

H
(1)
m (ka)

∣∣∣∣∣
2

. (70)

This was to show.



Useful formulae:

2π∫
0

ei(m−m′)φdφ = 2πδmm′ with δmm′ =

{
1 : m = m′,

0 : otherwise,
(71)

Jn(x) =
(−i)n

2π

2π∫
0

ei(x cosφ−nφ)dφ, (72)

2
d

dx
H(1)
m (x) = H

(1)
m−1(x)−H(1)

m+1(x). (73)

— Hand in solutions in lecture on 08.07.2012 —


