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1. Review of Fourier theory

a. Every function f(t) defined on [−T/2,+T/2] can be expanded in Fourier series:

f(t) =
A0

2
+

∞
∑

n=1

[

An cos

(

2πnt

T

)

+Bn sin

(

2πnt

T

)]

, (1)

with the coefficients An and Bn defined as:

An =
2

T

∫ +T/2

−T/2

f(t) cos

(

2πnt

T

)

dt, n = 0, 1, 2, . . . , (2)

Bn =
2

T

∫ +T/2

−T/2

f(t) sin

(

2πnt

T

)

dt, n = 1, 2, 3, . . . . (3)

Expand in Fourier series the following functions (5 points):

i. f(t) = t , ii. f(t) = (t− a)2 , iii. f(t) = sin(λt) , iv. f(t) = 2−Θ(−t) , v. f(t) = e−atΘ(t) ,

with a > 0 and Θ(t) denotes the Heaviside step function satisfying Θ(t < 0) = 0 and Θ(t ≥ 0) = 1.

b. When the interval [−T/2,+T/2] becomes [−∞,+∞] a function f(t) can be expanded in a Fourier integral:

f(t) =
1√
2π

∫ +∞

−∞

F (ω)e−iωtdω with F (ω) =
1√
2π

∫ +∞

−∞

f(t)e+iωtdt . (4)

The function F (ω) ≡ F [f(t)] defines the Fourier transform of f(t) and corresponds to the continuum version of
the complex coefficients An + iBn encountered in the Fourier series.

Prove the following properties of the Fourier transform (6 points):

i. F [f(t− a)] = eiωaF (ω) , ii. F [f(at)] =
1

|a|F
(ω

a

)

, iii. F
[

dn

dtn
f(t)

]

= (−iω)nF (ω) ,

iv. F [tnf(t)] =

(

−i
d

dω

)n

F (ω) , v. F [f(t)g(t)] =
(F ∗G) (ω)√

2π
, vi. F [(f ∗ g) (t)] =

√
2πF (ω)G(ω) ,

where (f ∗ g)(t) denotes the convolution

(f ∗ g)(t) =
∫ +∞

−∞

f(t− τ)g(τ)dτ . (5)
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Calculate the Fourier transforms of the following functions (4 points):

vii. f(t) = te−at2 , viii. f(t) =
dΘ(t)

dt
≡ δ(t) , ix. f(t) = e−tΘ(t− a) sin(t− a) , x. f(t) = (Θ ∗ sin)(at) ,

where a > 0 and δ(t) corresponds to the Dirac δ-function, which satisfies

∫ +∞

−∞

δ(t)dt = 1 and δ(t 6= 0) = 0 . (6)

As a matter of fact, δ(t) becomes infinite at t = 0. Θ(t) and δ(t) constitute “generalized functions” (in a
mathematical language: distributions) operating on the usual functions.

c. For a function f(n) depending on a discrete variable n = 0, 1, . . . , N − 1 where N ∈ N one can define a discrete
Fourier transform F (k) through the relations:

f(n) =
1√
N

N−1
∑

k=0

F (k)e−i 2πk

N
n and F (k) =

1√
N

N−1
∑

n=0

f(n)e+i 2πk

N
n . (7)

Retrieve the discrete Fourier transforms for the following functions (3 points):

i. f(n) = δ(n− r) , ii. f(n) = cos(λn) , iii. f(n) = Θ(n− r)e−a(n−r) (a > 0) where r ∈ [0, N − 1] . (8)

The discrete Fourier transform can be rewritten in an equivalent matrix form:
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where ωN = ei2π/N . (9)

Calculate the discrete Fourier transform of the function f(n) = n2 sin(nπ/2) for N = 4 (2 points).

2. Maxwell’s Equations

Maxwell’s equations of electromagnetism in vacuum, have the following differential form

∇ · E =
ρ

ε0
, ∇ ·B = 0 , ∇× E = −∂tB and ∇×B = µ0J + µ0ε0∂tE , (10)

with ρ the charge density, J the current density and ∂t ≡ ∂/∂t. Through the defining relations

E = −∇φ− ∂tA and B = ∇×A , (11)

the scalar (φ) and vector (A) electromagnetic potentials are introduced.

i. Using Eq. (11), obtain Maxwell’s equations in terms of φ and A (7 points).

ii. Study the behaviour of the equations retrieved in i., under gauge transformations (3 points):

φ → φ− ∂tχ and A
′ → A+∇χ .
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