THEORETICAL OPTICS

EXERCISE 1

C. Rockstuhl, M. Paszkiewicz, N. Perdana, M. Vavilin	$\24$ points
Institute of Theoretical Solid State Physics	Drop point: Your tutorial group in ILIAS
Karlsruhe Institute of Technology	Due Date: May 5 th 2022, 16:00

Problem 1.(10 points) Maxwell's equations in homogeneous and inhomogeneous media

Consider Maxwell's equations in a homogeneous, isotropic, dispersive, source-free, dielectric and magnetic medium characterized by a relative permittivity $\varepsilon_{\rm r}(\omega)$ and relative permeability $\mu_{\rm r}(\omega)$:

$$\nabla \times \mathbf{E}(\mathbf{r}, t) = -\frac{\partial \mathbf{B}(\mathbf{r}, t)}{\partial t}, \qquad \nabla \cdot \mathbf{B}(\mathbf{r}, t) = 0,$$
$$\nabla \times \mathbf{H}(\mathbf{r}, t) = \frac{\partial \mathbf{D}(\mathbf{r}, t)}{\partial t}, \qquad \nabla \cdot \mathbf{D}(\mathbf{r}, t) = 0.$$

(a) Show that if the electric field is a time harmonic plane wave characterized by a wave vector $\mathbf{k} = k\mathbf{u}$ and frequency ω , i.e. $\mathbf{E}(\mathbf{r}, t) = \mathbf{E}_0 e^{-i(\omega_0 t - \mathbf{k} \cdot \mathbf{r})}$, then \mathbf{k} satisfies the relations written as

$$\mathbf{k} \cdot \mathbf{E}_0 = 0$$
, and $k = \frac{\omega_0}{c} \sqrt{\varepsilon_{\mathrm{r}} \mu_{\mathrm{r}}}$,

where c is the speed of light $c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$. The latter equation is called the dispersion relation and it is an important equation. (3 points)

(b) Show that the magnetic field $\mathbf{H}(\mathbf{r}, t)$ associated with the plane wave $\mathbf{E}(\mathbf{r}, t) = \mathbf{E}_0 e^{-i(\omega_0 t - \mathbf{k} \cdot \mathbf{r})}$ can be written as a plane wave that has an amplitude of

$$\mathbf{H}_0 = \frac{\mathbf{u} \times \mathbf{E}_0}{Z},$$

where $Z = \sqrt{\frac{\mu_0 \mu_r}{\varepsilon_0 \varepsilon_r}}$ is the wave impedance of the medium.

(c) Show that the time-averaged Poynting vector associated with the monochromatic plane wave discussed above can be written as

$$\langle \mathbf{S}(\mathbf{r},t) \rangle = \frac{1}{2} \Re \left[Z \right] \frac{|\mathbf{E}_0|^2}{|Z|^2} e^{-k'' \mathbf{u} \cdot \mathbf{r}} \mathbf{u},$$

where $k'' = \Im[k]$ and $\langle .. \rangle$ denotes a time-averaged quantity. (2 points) (*Hint:* The Poynting vector is defined as $\mathbf{S}(\mathbf{r},t) = \mathbf{E}(\mathbf{r},t) \times \mathbf{H}(\mathbf{r},t)$ in real representation.)

(d) Show that in an inhomogeneous, nondispersive, and nonmagnetic dielectric medium (i.e. $\varepsilon_r(\mathbf{r}, \omega) = \varepsilon_r(\mathbf{r})$ and $\mu(\mathbf{r}, \omega) = \mu_0$), the electric and magnetic fields expressed in temporal Fourier (also called frequency) space satisfy the following wave equations:

$$(\nabla^2 + k_0^2 \varepsilon_r(\mathbf{r})) \mathbf{\bar{E}}(\mathbf{r}, \omega) = -\nabla (\mathbf{\bar{E}}(\mathbf{r}, \omega) \cdot \nabla \ln \varepsilon_r(\mathbf{r})), (\nabla^2 + k_0^2 \varepsilon_r(\mathbf{r})) \mathbf{\bar{H}}(\mathbf{r}, \omega) = (\nabla \times \mathbf{\bar{H}}(\mathbf{r}, \omega)) \times \nabla \ln \varepsilon_r(\mathbf{r}),$$

where $k_0 = \omega/c$.

(*Hint:* $\frac{\nabla \Phi(\mathbf{r})}{\Phi(\mathbf{r})} = \nabla \ln \Phi(\mathbf{r})$, for a scalar function $\Phi(\mathbf{r})$.)

(3 points)

(2 points)

Problem 2. (5 points) Lorentz model of material dispersion

The electric susceptibility for a material with bound electrons that can interact resonantly with light at a specific frequency is given by a Lorentz model:

$$\chi(\omega) = \frac{\varepsilon_0 f}{(\omega^2 - \omega_0^2) - i\gamma\omega};$$

where f is the oscillator strength, γ the damping constant, and ω_0 the resonance frequency.

Calculate the response function

$$R(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \chi(\omega) e^{-i\omega t} d\omega$$

Discuss both cases t < 0 and t > 0.

Problem 3. (9 points) Kramers-Kronig relation

(a) Consider a function f(z) in the complex plane. f(z) has a pole of order k at $z = z_0$. This means that f(z) can be expanded about $z = z_0$ in the following Laurent series: $f(z) = \sum_{n=-k}^{+\infty} a_n (z - z_0)^n$. Show that for z_0 being a simple pole of order k=1 we have that:

$$\int_{C_{z_0}} f(z) \mathrm{d}z = i\pi \mathrm{Res} \left\{ f(z=z_0) \right\}$$

where Res $\{f(z=z_0)\} = a_{-1}$ is the residue of f(z) at $z = z_0$ and C_{z_0} is the contour of half a circle centered at $z = z_0$, given by $z = z_0 + \lim_{R \to 0} Re^{i\theta}$, with $\theta \in [\pi, 2\pi]$. (3 points)

(b) Given that the imaginary part of the permittivity of a medium is

$$\Im[\varepsilon(\omega)] = \frac{\gamma \omega_p^2}{\omega(\gamma^2 + \omega^2)},$$

find the real part of the permittivity $\Re[\varepsilon(\omega)]$ by using the Kramers-Kronig relation.

(*Hint*: Use the formula $\Re[\varepsilon(\omega)] = 1 + \frac{1}{\pi} PV \int_{-\infty}^{+\infty} \frac{\Im[\varepsilon(\bar{\omega})]}{\bar{\omega}-\omega} d\bar{\omega}$, where 'PV' denotes the Cauchy's principal value.) (6 points)

(5 points)