THEORETICAL OPTICS

EXERCISE 1
C. Rockstuhl, M. Paszkiewicz, N. Perdana, M. Vavilin __ /24 points
Institute of Theoretical Solid State Physics Drop point: Your tutorial group in ILTAS
Karlsruhe Institute of Technology Due Date: May 5" 2022, 16:00

Problem 1. (10 points) Maxwell’s equations in homogeneous and inhomogeneous media

Consider Maxwell’s equations in a homogeneous, isotropic, dispersive, source-free, dielectric and magnetic
medium characterized by a relative permittivity e,(w) and relative permeability p,(w):

(a)

OB(r,t)

VxE(r,t):—T, V -B(r,t) =0,
VXH(r,t):%, V- D(r,t) = 0.

Show that if the electric field is a time harmonic plane wave characterized by a wave vector k = ku and
frequency w, i.e. E(r,t) = Ege i(wot=kT) then k satisfies the relations written as

k-Eo=0, and k = 2 /zr7ar,
C

where ¢ is the speed of light ¢ = . The latter equation is called the dispersion relation and it is an

1

Gy
important equation. (3 points)
Show that the magnetic field H(r, t) associated with the plane wave E(r,t) = Ege*(“0!=%*) can be written
as a plane wave that has an amplitude of

u X EO
HO = 7 )
where Z =, /2% is the wave impedance of the medium. (2 points)
0€r

Show that the time-averaged Poynting vector associated with the monochromatic plane wave discussed

above can be written as
S0 = Lz LB L owrny
b 2 | Z |2 b

where k" = (k] and (..) denotes a time-averaged quantity. (2 points)
(Hint: The Poynting vector is defined as S(r,t) = E(r,t) x H(r,t) in real representation.)

Show that in an inhomogeneous, nondispersive, and nonmagnetic dielectric medium (i.e. €,(r,w) = &,(r)
and p(r,w) = po), the electric and magnetic fields expressed in temporal Fourier (also called frequency)
space satisfy the following wave equations:

(V> + kie, (r)) E(r,w) = —=V(E(r,w) - VIne,(r)),
(V? + kie, (r))H(r,w) = (V x H(r,w)) x Vlne,(r),
where kg = w/c. 3 points
here k
(Hint: ngs) = VIn®(r), for a scalar function ®(r).)



Problem 2. (5 points) Lorentz model of material dispersion

The electric susceptibility for a material with bound electrons that can interact resonantly with light at a specific
frequency is given by a Lorentz model:

eof

x(w) = m,

where f is the oscillator strength, v the damping constant, and wg the resonance frequency.

Calculate the response function

oo

R(t) = / x(w)e™ “idw.

— 00

Discuss both cases t < 0 and ¢t > 0. (5 points)

Problem 3. (9 points) Kramers-Kronig relation

(a)

Consider a function f(z) in the complex plane. f(z) has a pole of order k at z = z5. This means that f(z)
can be expanded about z = 2y in the following Laurent series: f(z) = :fﬁk an(z — 29)™. Show that for

zo being a simple pole of order k=1 we have that:

/ f(z)dz =inRes{f(z = z0)}
Cay

where Res {f(z = 20)} = a1 is the residue of f(z) at z = z9 and C,, is the contour of half a circle centered
at z = zg, given by z = 2o + Il%imo Re' | with 6 € [, 27]. (3 points)
—

Given that the imaginary part of the permittivity of a medium is

Se(w)] = %
Se)] = S oy

find the real part of the permittivity R[e(w)] by using the Kramers-Kronig relation.
(Hint: Use the formula R[e(w)] = 1+ 1PV fj;o SE@I 4w, where ‘PV’ denotes the Cauchy’s principal

w—w

value.) (6 points)
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