THEORETICAL OPTICS

EXERCISE 2

C. Rockstuhl, M. Paszkiewicz, N. Perdana, M. Vavilin	$\/24$ points
Institute of Theoretical Solid State Physics	Drop point: Your tutorial group in ILIAS
Karlsruhe Institute of Technology	Due Date: May 19 th 2022, 16:00

Problem 1. (13 points) Pulse propagation in dispersive media

A Gaussian pulse with spectrum $U(z = 0, \omega) = \frac{Tu_0}{\sqrt{2\pi}} e^{-\frac{T^2(\omega-\omega_0)^2}{2}}$, where u_0 is the pulse amplitude, T is the pulse duration and ω_0 the carrier frequency, propagates through a piece of glass with a thickness of $\Delta z = d$ and a dielectric function $\varepsilon(\omega)$.

- (a) Expand the dispersion relation $k(\omega)$ in the neighborhood of $\omega = \omega_0$ up to the quadratic term. (2 points)
- (b) Discuss the physical meaning of the three constant coefficients that appear in the expansion. (3 points)
- (c) Write down an expression of the spectrum at the output, $U(z = d, \omega)$. (2 points)
- (d) Compute the pulse wave form at the output, u(z = d, t). (4 points)
- (e) Write down an expression of the reformed pulse duration at the output. (1 point)
- (f) Discuss the dependency of the term $\frac{d^2k}{d\omega^2}\Big|_{\omega=\omega_0}$ and the distance d for the reformed pulse duration.

(1 point)

(*Hint* 1: Use the answer for question 1(a) in the other questions.) (*Hint* 2: Use the formula $\int_{-\infty}^{\infty} e^{-AX^2 + BX} dX = \sqrt{\frac{\pi}{A}} e^{\frac{B^2}{4A}}$ for $\operatorname{Re}[A] > 0$.)

Problem 2. (11 points) Poynting Vector and Normal Mode

Consider a monochromatic plane wave of frequency ω_0 , propagating in a homogeneous isotropic weakly lossy dielectric medium of relative permittivity $\varepsilon = \varepsilon' + i\varepsilon''$ (where $\varepsilon', \varepsilon'' > 0$ and $\varepsilon' >> \varepsilon''$). Its electric field has the form $\mathbf{E}_r(\mathbf{r}, t) = E_0 \mathbf{e}_x e^{-\alpha z} \cos(\beta z - \omega_0 t + \phi)$, where the subscript r is used for the real valued fields.

- (a) Even though the field is given here as a real valued quantity, in some of the following tasks, it might be better to use the complex representation as a mean to simplify your calculations. Therefore, write at first the same field as above but in complex notation.
 (1 point)
- (b) By starting from the dispersion relation of the plane wave in the medium, show that

$$\beta \approx \frac{\omega_0}{c} \sqrt{\epsilon'}$$
 and $\alpha \approx \frac{\omega_0}{c} \frac{\varepsilon''}{2\sqrt{\varepsilon'}}$

Useful formula: $\sqrt{1+z} \approx 1 + \frac{1}{2}z, \quad z \in \mathbb{C}, \quad |z| \ll 1.$

- (c) Start from Maxwell's equations to find the real valued magnetic field $\mathbf{H}_r(\mathbf{r}, t)$. (4 points)
- (d) Continue to use the real valued representation of the field to write down the formula for the instantaneous Poynting vector, $\mathbf{S}_r(\mathbf{r}, t)$. (1 point)
- (e) Find the time averaged Poynting vector using the formula $\langle \mathbf{S}_r(\mathbf{r},t) \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} \mathbf{S}_r(\mathbf{r},t) dt.$ Useful formula: $\cos(a)\cos(b) = \frac{1}{2} [\cos(a-b) + \cos(a+b)], \sin(a)\cos(b) = \frac{1}{2} [\sin(a-b) + \sin(a+b)].$

(3 points)

(2 points)