
Theoretical Optics
Exercise 1

C. Rockstuhl, M. Paszkiewicz, N. Perdana, M. Vavilin /24 points

Institute of Theoretical Solid State Physics Drop point: Your tutorial group in ILIAS

Karlsruhe Institute of Technology Due Date: May 5th 2022, 16:00

Problem 1.(10 points) Maxwell’s equations in homogeneous and inhomogeneous media

Consider Maxwell’s equations in a homogeneous, isotropic, dispersive, source-free, dielectric and magnetic
medium characterized by a relative permittivity εr(ω) and relative permeability µr(ω):

∇×E(r, t) = −∂B(r, t)

∂t
, ∇ ·B(r, t) = 0,

∇×H(r, t) =
∂D(r, t)

∂t
, ∇ ·D(r, t) = 0.

(a) Show that if the electric field is a time harmonic plane wave characterized by a wave vector k = ku and
frequency ω, i.e. E(r, t) = E0e

−i(ω0t−k·r), then k satisfies the relations written as

k ·E0 = 0, and k =
ω0

c

√
εrµr,

where c is the speed of light c = 1√
ε0µ0

. The latter equation is called the dispersion relation and it is an
important equation. (3 points)

(b) Show that the magnetic field H(r, t) associated with the plane wave E(r, t) = E0e
−i(ω0t−k·r) can be written

as a plane wave that has an amplitude of

H0 =
u×E0

Z
,

where Z =
√

µ0µr

ε0εr
is the wave impedance of the medium. (2 points)

(c) Show that the time-averaged Poynting vector associated with the monochromatic plane wave discussed
above can be written as

⟨S(r, t)⟩ = 1

2
ℜ [Z]

| E0 |2

| Z |2
e−2k′′u·ru,

where k′′ = ℑ[k] and ⟨..⟩ denotes a time-averaged quantity. (2 points)
(Hint: The Poynting vector is defined as S(r, t) = E(r, t)×H(r, t) in real representation.)

(d) Show that in an inhomogeneous, nondispersive, and nonmagnetic dielectric medium (i.e. εr(r, ω) = εr(r)
and µ(r, ω) = µ0), the electric and magnetic fields expressed in temporal Fourier (also called frequency)
space satisfy the following wave equations:(

∇2 + k20εr(r)
)
Ē(r, ω) = −∇(Ē(r, ω) · ∇ ln εr(r)),(

∇2 + k20εr(r)
)
H̄(r, ω) = (∇× H̄(r, ω))×∇ ln εr(r),

where k0 = ω/c. (3 points)

(Hint: ∇Φ(r)
Φ(r) = ∇ lnΦ(r), for a scalar function Φ(r).)
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Solution to problem 1
(a) To simplify the expression, we first make the transition to Frequency Fourier space of Maxwell’s equations

using the Ansatz E(r, t) = Ē(r, ω)e−iωt. This allows to recast Maxwell’s equations as an algebraic

∇× Ē(r, ω) = iωB̄(r, ω), ∇ · B̄(r, ω) = 0,

∇× H̄(r, ω) = −iωD̄(r, ω), ∇ · D̄(r, ω) = 0.

The equation ∇ · D̄(r, ω) = 0 can be rewritten in terms of the electric field, ε0εr(ω)∇ · Ē(r, ω) = 0. This
equation can only be zero (excluding frequencies where the permittivity is zero) whenever ∇ · Ē(r, ω) = 0.

Now we furthermore make the Ansatz that the field corresponds to a plane wave with a spatially dependent
field distribution that corresponds to Ē(r, ω) = E0e

ik·r. If we substitute this ansatz we get

i(kxE0x + kyE0y + kzE0z )e
ik·r = 0,

This requires that k ·E0 = 0.

To derive the dispersion relation we apply the curl equation one more time to the first Maxwell’s equations

∇×∇× Ē(r, ω) = iω∇× B̄(r, ω)

Plugging in the second curl equation and using the fact that B̄(r, ω) = µ0µr(ω)H̄(r, ω) we obtain

∇×∇× Ē(r, ω) = ω2ε0µ0εr(ω)µr(ω)Ē(r, ω)

Now using the fact that ∇×∇× = ∇[∇·]−∇2 we can conclude that

∇×∇× Ē(r, ω) = ∇[∇ · Ē(r, ω)]−∇2Ē(r, ω) = −∇2Ē(r, ω)

The resulting Helmholtz equation reads as

∇2Ē(r, ω) +
ω2

c20
εr(ω)µr(ω)Ē(r, ω) = 0

with ∇2Ē(r, ω) = ∇(∇ · Ē(r, ω)) = −k2Ē(r, ω) we obtain(
−k2 +

ω2

c20
εr(ω)µr(ω)

)
Ē(r, ω) = 0

which is only possible to be solved if

k2 = k2x + k2y + k3z = k2 =
ω2

c20
εr(ω)µr(ω).

(b) This can be derived straightforwardly from the Faraday-Neumann equation, if we substitute the plane wave
solution

ik×E0e
−i(ωt−k·r) = −µ0µr(−iω)H0e

−i(ωt−k·r),

that leads to
H0 =

k

ωµ0µr
u×E0.

The expression k
ωµ0µr

can be written as

k

ωµ0µr
=

ω
√
µ0ε0εrµr

ωµ0µr
=

√
ε0εr
µ0µr

=
1

Z
,

so that we can conclude
H0 =

u×E0

Z
.
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(c) The Poynting vector in real representation reads

S(r, t) =ℜ{E(r, t)} × ℜ{H(r, t)}

=
E(r, t) +E∗(r, t)

2
× H(r, t) +H∗(r, t)

2

=
Ē(r, t)e−iωt + Ē∗(r, t)eiωt

2
× H̄(r, t)e−iωt + H̄∗(r, t)eiωt

2

=
1

4

(
Ē× H̄∗ + Ē∗ × H̄+ Ē× H̄e−2ωt + Ē∗ × H̄∗

0e
2iωt

)
=

1

2

(
ℜ{Ē× H̄∗}+ ℜ{Ē× H̄e−2ωt}

)
with Ē = E0e

iku·r and H̄ = H0e
iku·r.

The time average of the Poynting vector corresponds to the integral of the Poynting vector over time
(duration of the measurement). The integration causes vanishing of the fastly oscillating terms so the time
averaged Poyinting vector can be calculated as

⟨S(r, t)⟩ = 1

2
ℜ
[
Ē(r, ω0)× H̄∗(r, ω0)

]
=

1

2
ℜ
[
E0e

iku·r ×H∗
0e

−ik∗u·r
]
=

=
1

2
ℜ
[
ei(k−k∗u·r)E0 ×

u×E∗
0

Z∗

]
=

1

2
e−2k′′u·rℜ

[
(E0 ·E∗

0)u− (E0 · u)E0

Z∗

]
=

=
1

2
e−2k′′u·rℜ [Z]

| E0 |2

| Z |2
u

(d) Because in this instance the medium is inhomogeneous, the fourth Maxwell equation reads

∇ · D̄(r, ω) = ∇ ·
(
ε0εr(r)Ē(r, ω)

)
= ε0∇ ·

(
εr(r)Ē(r, ω)

)
= 0,

since n =
√
εr. This implies,

∇(εr(r)) · Ē(r, ω) + εr(r)∇ · Ē(r, ω) = 0

⇒ ∇ · Ē(r, ω) = − Ē(r, ω) · ∇(εr(r))

εr(r)
= −Ē · ∇ ln εr(r). (1)

Now, the first and second Maxwell equations can be written as

∇× Ē(r, ω) = iωµ0H̄(r, ω), ∇× H̄(r, ω) = −iωε0εr(r)Ē(r, ω).

By applying the curl operator ∇× to the first Maxwell equation, and replacing ∇×H̄(r, ω) by its expression
in terms of Ē(r, ω), we obtain

∇×∇× Ē(r, ω) = ∇[∇ · Ē(r, ω)]−∇2Ē(r, ω) = ω2µ0ε0εr(r)Ē(r, ω).

Inserting equation (1) into the above result, it follows(
∇2 + k20εr(r)

)
Ē(r, ω) = −∇(Ē(r, ω) · ∇ ln εr(r)).

We proceed analogously for the magnetic field, using the fact that ∇ · H̄(r, ω) = 0, from the third Maxwell
equation. We have

−∇2H̄(r, ω) = −iωµ0ε0∇× (εr(r)Ē(r, ω)).

Now,

∇× (εr(r)Ē(r, ω)) = εr(r)∇× Ē(r, ω) +∇εr(r)× Ē(r, ω)

= iωµ0εr(r)H̄(r, ω) + i
∇εr(r)×∇× H̄(r, ω)

εr(r)ωε0

Therefore,

−∇2H̄(r, ω) = −iωε0

(
iωµ0εr(r)H̄(r, ω) + i

∇ ln εr(r)×∇× H̄(r, ω)

ωε0

)
Simplifying and rearranging, we finally obtain(

∇2 + k20εr(r)
)
H̄(r, ω) = (∇× H̄(r, ω))×∇ ln εr(r),
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Problem 2.(5 points) Lorentz model of material dispersion

The electric susceptibility for a material with bound electrons that can interact resonantly with light at a specific
frequency is given by a Lorentz model:

χ(ω) =
ε0f

(ω2
0 − ω2)− iγω

;

where f is the oscillator strength, γ the damping constant, and ω0 the resonance frequency.
Calculate the response function

R(t) =
1

2π

∞̂

−∞

χ(ω)e−iωtdω.

Discuss both cases t < 0 and t > 0. (5 points)

Solution to problem 2
The response function can be written as:

R(t) =
1

2π

∞̂

−∞

ε0f

(ω2
0 − ω2)− iγω

e−iωtdω.

The integral can be evaluated by means of the residue theory. The poles of the function χ(ω) are given by:

ω1,2 = − iγ

2
±

√
ω2
0 −

γ2

4
= − iγ

2
± Ω,

with ω2
0 ≫ γ2. In this case there are only two poles of the first order in the negative complex half-space. We

can now perform an integration along a closed half-circle in the complex plane.

(i) Case t<0. In this case we must use a half-circle in the upper half-plane, since the integrand −→ 0 along
the half-circle. In this case we get:

R(t) =

∞̂

−∞

ε0f(
ω + iγ

2 − Ω
) (

ω + iγ
2 +Ω

)e−iωtdω = 0

since there are no residues in the half-circle.

(ii) Case t>0. In this case we must use a half-circle in the lower half-plane, since the integrand −→ 0 along
the half-circle. We can then write:

R(t) =

∞̂

−∞

ε0f(
ω + iγ

2 − Ω
) (

ω + iγ
2 +Ω

)e−iωtdω = i

(
Res

(
χ,

−iγ

2
+ Ω

)
+Res

(
χ,

−iγ

2
− Ω

))
.

This can be evaluated as:

= i

[(
ω +

iγ

2
− Ω

)
ε0f(

ω + iγ
2 − Ω

) (
ω + iγ

2 +Ω
)e−iωt

] ∣∣∣∣
ω=− iγ

2 +Ω

+

+ i

[(
ω +

iγ

2
+ Ω

)
ε0f(

ω + iγ
2 − Ω

) (
ω + iγ

2 +Ω
)e−iωt

] ∣∣∣∣
ω=− iγ

2 −Ω

=

= i
ε0f

2Ω

(
e−iΩt + eiΩt

)
e−

γt
2 =

ε0f

Ω
sin (Ωt) e−

γt
2
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Problem 3.(9 points) Kramers-Kronig relation

(a) Consider a function f(z) in the complex plane. f(z) has a pole of order k at z = z0. This means that f(z)
can be expanded about z = z0 in the following Laurent series: f(z) =

∑+∞
n=−k an(z − z0)

n. Show that for
z0 being a simple pole of order k=1 we have that:

ˆ
Cz0

f(z)dz = iπRes {f(z = z0)}

where Res {f(z = z0)} = a−1 is the residue of f(z) at z = z0 and Cz0 is the contour of half a circle centered
at z = z0, given by z = z0 + lim

R→0
Reiθ, with θ ∈ [π, 2π]. (3 points)

(b) Given that the imaginary part of the permittivity of a medium is

ℑ[ε(ω)] =
γω2

p

ω(γ2 + ω2)
,

find the real part of the permittivity ℜ[ε(ω)] by using the Kramers-Kronig relation.

(Hint : Use the formula ℜ[ε(ω)] = 1 + 1
πPV

´ +∞
−∞

ℑ[ε(ω̄)]
ω̄−ω dω̄, where ‘PV’ denotes the Cauchy’s principal

value.) (6 points)

Solution to problem 3
(a) We have that:

ˆ
Cz0

f(z)dz =

ˆ
Cz0

+∞∑
n=−k

an(z − z0)
ndz

z=z0+Reiθ

=

+∞∑
n=−k

an lim
R→0

ˆ 2π

π

(Reiθ)niReiθdθ

= i

+∞∑
n=−k

an lim
R→0

Rn+1

ˆ 2π

π

ei(n+1)θdθ

= i

+∞∑
n=−k

an lim
R→0

Rn+1

[
πδn,−1 +

1 + (−1)n

i(n+ 1)
δn,m̸=−1

]
= iπa−1, for k = 1

= iπRes {f(z = z0)} , for k = 1

(b) We have that:

ℜ[ε(ω)] = 1 +
1

π
PV

ˆ ∞

−∞

ℑ[ε(ω)]
ω − ω

dω

= 1 +
γω2

p

π
PV

ˆ ∞

−∞

1

ω(γ2 + ω2)(ω − ω)
dω.

The integrated quantity has four poles of the first order at ω = 0, ω = ω, and ω = ±iγ. We proceed with the
integration along a contour C that encloses the upper half complex plane. We can break contour C as the
sum of the contours S∞, S0, Sω, S. S∞ is given by z = lim

R→∞
Reiθ, θ ∈ [0, π] S0 is given by z = lim

R→0
Reiθ,

θ ∈ [π, 2π]. Sω is given by z = ω + lim
R→0

Reiθ, θ ∈ [π, 2π].

Finally, S is given by z ∈ (−∞,− lim
R→0

R] ∪ [ lim
R→0

R,ω − lim
R→0

R] ∪ [ω + lim
R→0

R,+∞). We want to calculate
the following integral:
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I(ω) = PV

ˆ ∞

−∞
f(ω)dω

= PV

ˆ ∞

−∞

1

ω(γ2 + ω2)(ω − ω)
dω

=

ˆ
S

1

ω(γ2 + ω2)(ω − ω)
dω

=

[ˆ
C

−
ˆ
S∞

−
ˆ
S0

−
ˆ
Sω

]
1

ω(γ2 + ω2)(ω − ω)
dω

From the Residue Theorem, since contour C encloses three simple poles at ω = iγ, ω = 0, ω = ω, we have
that:

ˆ
C

1

ω(γ2 + ω2)(ω − ω)
dω = 2πiRes {f(ω = iγ)}+ 2πiRes {f(ω = 0)}+ 2πiRes {f(ω = ω)}

Also, since |ω(γ2 + ω2)(ω − ω)| → ∞ as |ω| → ∞, we have that:

ˆ
S∞

1

ω(γ2 + ω2)(ω − ω)
dω = 0

Moreover, from question (a) we have:

ˆ
S0

1

ω(γ2 + ω2)(ω − ω)
dω = πiRes {f(ω = 0)}

ˆ
Sω

1

ω(γ2 + ω2)(ω − ω)
dω = πiRes {f(ω = ω)}

Putting all the above together gives:

I(ω) = 2πiRes {f(ω = iγ)}+ πiRes {f(ω = 0)}+ πiRes {f(ω = ω)}

= 2πi
1

ω(iγ + ω)(ω − ω)

∣∣∣
ω=iγ

+ πi
1

(γ2 + ω2)(ω − ω)

∣∣∣
ω=0

+ πi
1

ω(γ2 + ω2)

∣∣∣
ω=ω

= πi

(
ω + iγ

γ2(ω2 + γ2)
− 1

γ2ω
+

1

ω(ω2 + γ2)

)
= − π

γ(ω2 + γ2)
.

Finally. we get:

ℜ[ε(ω)] = 1 +
γω2

p

π
PV

ˆ ∞

−∞

1

ω(γ2 + ω2)(ω − ω)
dω

= 1−
γω2

p

π

π

γ(ω2 + γ2)

=
ω2 + γ2 − ω2

p

ω2 + γ2
.
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