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Problem 1.(13 points) Pulse propagation in dispersive media

A Gaussian pulse with spectrum U(z = 0, ω) = Tu0√
2π

e−
T2(ω−ω0)2

2 , where u0 is the pulse amplitude, T is the pulse
duration and ω0 the carrier frequency, propagates through a piece of glass with a thickness of ∆z = d and a
dielectric function ε(ω).

(a) Expand the dispersion relation k(ω) in the neighborhood of ω = ω0 up to the quadratic term. (2 points)

(b) Discuss the physical meaning of the three constant coefficients that appear in the expansion. (3 points)

(c) Write down an expression of the spectrum at the output, U(z = d, ω). (2 points)

(d) Compute the pulse wave form at the output, u(z = d, t). (4 points)

(e) Write down an expression of the reformed pulse duration at the output. (1 point)

(f) Discuss the dependency of the term d2k
dω2

∣∣
ω=ω0

and the distance d for the reformed pulse duration.
(1 point)

(Hint 1: Use the answer for question 1(a) in the other questions.)
(Hint 2: Use the formula

´∞
−∞ e−AX2+BXdX =

√
π
Ae

B2

4A for Re[A] > 0.)

Solution to problem 1
(a) The dispersion relation can be expanded as:

k(ω) = k(ω0) +
dk

dω

∣∣∣∣
ω=ω0

(ω − ω0) +
1

2

d2k

dω2

∣∣∣∣
ω=ω0

(ω − ω0)
2
.

(b) The first term is k(ω0) =
ω0

vph
, where vph is the phase velocity.

The second term is dk
dω

∣∣∣∣
ω=ω0

= 1
vg(ω)

∣∣∣∣
ω=ω0

, where vg is the group velocity.

The last term is d
dω

1
vg(ω)

∣∣∣∣
ω=ω0

≡ D, which characterizes the frequency dependency of the group velocity,

called the group velocity dispersion (GVD). If this term is zero, it means the group velocity does not change
with frequency.

(c) The expression of the spectrum at the output is:

U(z = d, ω) =
Tu0√
2π

e−
T2(ω−ω0)2

2 eik0d+iv−1
g (ω−ω0)d+i

D(ω−ω0)2d
2 .

(d) The pulse waveform at the output is given by

u(z = d, t) =

∞̂

−∞

U(z = d, ω)e−iωtdω =
Tu0√
2π

ei(k0d−ω0t)

∞̂

−∞

e
−
(

T2

2 −iDd
2

)
(ω−ω0)

2+iv−1
g (ω−ω0)d−i(ω−ω0)tdω.
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The integral can be evaluated by means of the formula on the integration of a Gaussian, yielding:

u(z = d, t) =
Tu0√
2π

ei(k0d−ω0t)

√
π(

T 2

2 − iDd
2

)e −
(
t− d

vg

)2

4(T2
2

−iDd
2 ) ,

=
Tu0√
2π

ei(k0d−ω0t)

√
π

T 2

2

(
1− iDd

T 2

)e −
(
t− d

vg

)2
(1+iDd

T2 )
2T2(1−iDd

T2 )(1+iDd
T2 ) ,

= u0e
i(k0d−ω0t)

√
1

(1− iΦ)
e

−
(
t− d

vg

)2
(1+iΦ)

2T2(1+Φ2) ,

= u0

√
1

(1− iΦ)
e

−
(
t− d

vg

)2

2τ2 e−i

(
t− d

vg

)2
Φ

2τ2 ei(k0d−ω0t),

where Φ = Dd
T 2 , and τ = T

√
1 + Φ2.

(e) The pulse duration at the output is τ .

(f) The reformed pulse duration τ increases with the distance d and D.

Problem 2.(11 points) Poynting Vector and Normal Mode

Consider a monochromatic plane wave of frequency ω0, propagating in a homogeneous isotropic weakly lossy
dielectric medium of relative permittivity ε = ε′ + iε′′ (where ε′, ε′′ > 0 and ε′ >> ε′′). Its electric field has the
form Er(r, t) = E0 ex e−αz cos(βz − ω0t+ ϕ), where the subscript r is used for the real valued fields.

(a) Even though the field is given here as a real valued quantity, in some of the following tasks, it might be
better to use the complex representation as a mean to simplify your calculations. Therefore, write at first
the same field as above but in complex notation. (1 point)

(b) By starting from the dispersion relation of the plane wave in the medium, show that

β ≈ ω0

c

√
ϵ′ and α ≈ ω0

c

ε′′

2
√
ε′

Useful formula:
√
1 + z ≈ 1 + 1

2z, z ∈ C, |z| ≪ 1. (2 points)

(c) Start from Maxwell’s equations to find the real valued magnetic field Hr(r, t). (4 points)

(d) Continue to use the real valued representation of the field to write down the formula for the instantaneous
Poynting vector, Sr(r, t). (1 point)

(e) Find the time averaged Poynting vector using the formula ⟨Sr(r, t)⟩ = limT→∞
1
2T

´ +T

−T
Sr(r, t)dt.

Useful formula: cos(a) cos(b) = 1
2 [cos(a− b) + cos(a+ b)], sin(a) cos(b) = 1

2 [sin(a− b) + sin(a+ b)].
(3 points)

Solution to problem 2
(a) The real valued electric field can be written in its complex form as

Er (r, t) = E0 ex e−αz cos(βz − ω0t+ ϕ) =
1

2

[
Ec e

−iω0t +E∗
c e+iω0t

]
with Ec = E0 eiϕex ei(β+iα)z.

(b) The wave-vector can be written as k = k′ + ik′′ = (β + iα) ez. We know the dispersion relation of a plane
wave in a homogeneous medium as k · k =

ω2
0

c2 ϵ. This leads to:

β + iα =
ω0

c

√
ε′ + iε′′ =

ω0

c

√
ε′

√
1 + i

ε′′

ε′
,
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The expression can be Taylor expanded, and we obtain

β + iα =
ω0

c

√
ε1

(
1 + i

ε′′

2ε′

)

From which we find k′ ≈ ω0

c

√
ϵ′ and k′′ ≈ ω0

c
ε′′

2
√
ε′

.

(c) Same like electric field, we can present the real valued magnetic field like:

Hr (r, t) =
1

2

[
Hc e

−iω0t +H∗
c e+iω0t

]
Using the time domain Maxwell equation ∇ × Er (r, t) = −µ0

∂Hr(r,t)
∂t , we find the relation between the

complex amplitudes to be ∇×Ec = iωµ0Hc. Followed by:

∇×Ec =

∣∣∣∣∣∣∣∣∣
ex ey ez

∂
∂x

∂
∂y

∂
∂z

E0 eiϕex ei(β+iα)z 0 0

∣∣∣∣∣∣∣∣∣ = i(β + iα)E0 eiϕey ei(β+iα)z

Which gives Hc =
(β+iα)E0 eiϕ

ω0µ0
ey ei(β+iα)z. And we calculate the real valued magnetic field:

Hr (r, t) =
E0e

−αz

2ωµ0
ey

[
(β + iα)ei(βz−ω0t+ϕ) + (β − iα)e−i(βz−ω0t+ϕ)

]
=

=
E0

ω0µ0
e−αzey [β cos(βz − ω0t+ ϕ)− α sin(βz − ω0t+ ϕ)]

(d) Sr (r, t) = Er (r, t)×Hr (r, t)

(e) The full calculation reads

⟨Sr (r, t)⟩ = lim
T→∞

1

2T

ˆ +T

−T

Sr (r, t) dt (1)

= lim
T→∞

1

2T

ˆ +T

−T

Er (r, t)×Hr (r, t) dt (2)

=
E2

0

ω0µ0
e−2αzez lim

T→∞

1

2T

ˆ +T

−T

cos(βz − ω0t+ ϕ) [β cos(βz − ω0t+ ϕ)− α sin(βz − ω0t+ ϕ)] dt

=
E2

0

ω0µ0
e−2αzez lim

T→∞

1

2T

ˆ +T

−T

[
β
cos(2(βz − ω0t+ ϕ)) + 1

2
− α

sin(2(βz − ω0t+ ϕ))

2

]
dt

=
E2

0

ω0µ0

β

2
e−2αzez (3)
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