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Problem 1.(15 points) Electrostatic stress tensor

Consider two spherical shells with a radius of R are charged with a surface charge density of σ, and are separated
by a center-to-center distance d > 2R in free space (see Figure below).

Figure 1: Two identical spherical shells in free space with a surface charge density of σ are depicted in x-y plane.

(a) Show that the total electric field caused by two spherical shells at the planar surface sketched with a red
dashed-line (x = d

2 ) in Figure 1 is written as

E =
2σR2

ϵ0

(
1

d2/4 + y2 + z2

)3/2

(yŷ + zẑ).

(5 points)

(b) Calculate Maxwell’s stress tensor
←→
T at x = d/2. (2 points)

(c) By using the stress tensor
←→
T obtained above, show that the force that the shell #1 exerts on the shell #2

is written as

F =
4πσ2R4

ϵ0d2
x̂.

(Hint: A proper surface for the surface integration is y-z plane at x = d/2.) (6 points)

(d) Verify that the calculated force above is identical to the force between two charged point particles when the
charge of each particle is Q = 4πR2σ. (2 points)

Solution to problem 1
(a) The electric force in this problem is determined from Gauss’s law. The surface for integration is exactly

between the center of the two spheres. This surface close at infinity, where the electric field is zero. Setting
the origin of the system at the center of sphere 1, the electric field due to sphere 1 is given by

E1 =
q

4πϵ0r2
r̂ =

σR2

ϵ0r2
r̂

where q = σ4πR2 is the total charge on each sphere .
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Writing the electric field in Cartesian coordinate system, and setting the x = d
2 , the electric field of the the

sphere 1 will be

E1 =
σR2

ϵ0
(

1

(d/2)2 + y2 + z2
)(

d/2x̂+ yŷ + zẑ√
(d/2)2 + y2 + z2

)

using r =
√
(d/2)2 + y2 + z2as the distance from the center of sphere 1 to the plane. The field of second

sphere is

E2 =
σR2

ϵ0
(

1

(d/2− d)2 + y2 + z2
)(

(d/2− d)x̂+ yŷ + zẑ√
(d/2− d)2 + y2 + z2

)

=
σR2

ϵ0
(

1

d2/4 + y2 + z2
)(
−d/2x̂+ yŷ + zẑ√

d2/4 + y2 + z2
)

We have to calculate total field in the system because the stress tensor depends on that. The total field at
red-dashed line will be superposition of two fields of two spheres :

Et = E1 +E2 =
2σR2

ϵ0
(

1

d2/4 + y2 + z2
)3/2(yŷ + zẑ)

This will provide all information for stress tensor

Ex = 0

Ey =
2σR2

ϵ0

y

(d2/4 + y2 + z2)3/2

Ez =
2σR2

ϵ0

z

(d2/4 + y2 + z2)3/2

E2 =
4σ2R4

ϵ20

y2 + z2

(d2/4 + y2 + z2)3

(b) General form of the stress tensor in free space is

Tij ≡ ϵ0(EiEj −
1

2
δijE

2) +
1

µ0
(BiBj −

1

2
δijB

2)

Here, there are NO magnetic fields in this problem so the electrostatic Maxwell stress tensor is

←→
T = ϵ0


E2

x − E2

2 ExEy ExEz

EyEx E2
y − E2

2 EyEz

EzEx EzEy E2
z − E2

2

 = ϵ0


−E2

2 0 0

0 E2
y − E2

2 EyEz

0 EzEy E2
z − E2

2

 ,

(c) The force in sphere 2 due to the 1 may be written as

F =

˛
s

←→
T · dA =

ˆ +∞

−∞

ˆ +∞

−∞

←→
T · (−x̂)dydz

←→
T .(−x̂) = ϵ0


−E2

2 0 0

0 E2
y − E2

2 EyEz

0 EzEy E2
z − E2

2



−1

0

0


= ϵ0

E2

2
x̂

=
2σ2R4

ϵ0

y2 + z2

(d2/4 + y2 + z2)3
x̂

F =

ˆ +∞

−∞

ˆ +∞

−∞

←→
T · (−x̂)dydz

=
2σ2R4

ϵ0

ˆ +∞

−∞

ˆ +∞

−∞

y2 + z2

(d2/4 + y2 + z2)3
dydzx̂
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To solve the integral, consider yz -plane to be in the Cylindrical coordinates system i.e. ρ =
√

y2 + z2

ˆ +∞

−∞

ˆ +∞

−∞

y2 + z2

(d2/4 + y2 + z2)3
dydz =

ˆ +∞

0

ˆ 2π

0

ρ2

(d2/4 + ρ2)3
ρdρdϕ

= 2π

ˆ +∞

0

ρ2

(d2/4 + ρ2)3
ρdρ

= π

ˆ +∞

0

u

(d2/4 + u)3
du

=
2π

d2

The final solution will be

F =

ˆ +∞

−∞

ˆ +∞

−∞

←→
T · (−x̂)dydz =

4πσ2R4

ϵ0d2
x̂

(d) The force of two charged particles (with charge q = 4πσR2) separated by distance d is

F =
q2

4πϵ0d2
x̂ =

(4πσR2)2

4πϵ0d2
x̂ =

4πσ2R4

ϵ0d2
x̂

Problem 2.(9 points) Scalar diffraction theory

Consider the circularly symmetric object shown in Fig. 2. It is infinite in extent in the x-y plane. Its amplitude
transmission function is given by

tA(r) = 2πJ0(ar) + 4πJ0(2ar),

where J0(x) is the zeroth-order Bessel function of the first kind, a is some positive real number signifying
a spatial frequency (i.e. it has the units of m−1), and r =

√
x2 + y2 is the radial coordinate in the two-

dimensional plane. In scalar approximation, this object is illuminated by a normally incident, unit-amplitude
plane wave propagating along z direction, and the paraxial condition is assumed to hold.

r
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x
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?

z

Infinitely extended object on the x-y plane

Image plane

Incident lig
ht

Figure 2: A circularly symmetric object in x− y plane.

(a) Using Fresnel approximation, find the expression of the field distribution in the image plane at z.

(4 points)

(Hint: Use the formula for the Fourier transformation (FT ) of the Bessel function:
1

(2π)2

˜
2πγJ0(γ

√
x2 + y2)e−i(αx+βy)dxdy = δ(

√
α2 + β2 − γ), where γ is a some positive real constant.
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Also use the property of the Dirac delta function:
FT [δ(x− x0)f(x)] = FT [δ(x− x0)f(x0)] where f(x) has no singularity in the whole space.)

(b) Discuss the change of the field’s amplitude in the direction of propagation z. (2 points)

(c) At what distances z behind the object, will we find a field distribution that is of the same form as that of
the object, up to possible complex constants (i.e. ignore the overall phase factor)? (3 points)

Solution to problem 2
(a)

u(r) =

¨ ∞

−∞
U(α, β; z = 0)eikze−i z

2k (α2+β2)ei(αx+βy)dαdβ

=

¨ ∞

−∞

(
1

(2π)2

¨ ∞

−∞
tAe

−i(αx′+βy′)dx′dy′
)
eikze−i z

2k (α2+β2)ei(αx+βy)dαdβ

FT
=

¨ ∞

−∞

(
δ(
√
α2 + β2 − a) + δ(

√
α2 + β2 − 2a)

) 1

a
eikze−i z

2k (α2+β2)ei(αx+βy)dαdβ

=

¨ ∞

−∞

(
δ(
√
α2 + β2 − a)eikze−i z

2ka2

+ δ(
√
α2 + β2 − 2a)eikze−i z

2k 4a2
) 1

a
ei(αx+βy)dαdβ

FT -1

= 2πJ0(ar)e
ikze−i z

2ka2

+ 4πJ0(2ar)e
ikze−i z

2k 4a2

(b) Field distribution depends on z as
u(r) ∼ eikze−i a2

2k z.

Writing k = kr + iki we can write the above dependence in terms of the amplitude and the oscillating part

u(r) ∼ e
−ki

(
1+ a2

2|k|2

)
z
e
ikr

(
1− a2

2|k|2

)
z
.

For positive values of imaginary part of k the amplitude decreases. For negative values of ki, the amplitude
would increase.

(c) For this part we consider real values of k. The condition for z can be written as

u(r) = eikze−i z
2ka2

(
2πJ0(ar) + 4πJ0(2ar)e

−i z
2k 3a2

)
= eikze−i z

2ka2

(2πJ0(ar) + 4πJ0(2ar)) , when e−i z
2k 3a2

= 1

That is,

z

2k
3a2 = 2πm, where m is an integer,

so

z =
4k

3a2
mπ.
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