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Institute of Theoretical Solid State Physics Drop point: Your tutorial group in ILIAS

Karlsruhe Institute of Technology Due Date: June 23rd 2022, 16:00

Problem 1.(7 points) Diffraction theory

In paraxial (Fresnel) approximation, any periodic field distribution u0(x+ d) = u0(x) is reproduced (except for
a global phase factor) after propagation lengths zm that are integer multiples of a distinct length LT, called
Talbot length. To prove that, we need to develop the following steps:

(a) Write the exact expression of the transfer function for propagation in homogeneous space. Furthermore,
derive the Fresnel transfer function in homogeneous space. (1 point)
(Hint: Use the Taylor expansion

√
1− x ≈ 1− 1

2x for x ≪ 1.)

(b) For an arbitrary field u0(x, z = 0) expanded into a Fourier series, i.e., u0(x, z = 0) =
∑
n
ane

in 2π
d x, calculate

the spatial Fourier spectrum U0(α, z = 0).
(Useful formula: 1

2π

´
eiβxe−iαxdx = δ(β − α).) (2 points)

(c) Calculate the field u(x, z) by means of the Fresnel transfer function in homogeneous space. (2 points)

(d) Show that the propagation lengths where the field reproduces (up to a global phase factor) are given by

zm = mLT,

where LT = 2d2

λ0
, and m ∈ N. (2 points)

Solution to problem 1

(a) Without approximation the transfer function reads H(α, β, z) = ei
√

k2−α2−β2z. If α2 + β2 ≪ k2, then

H(α, β, z) = ei
√

k2−α2−β2z = eikz
√

1−α2+β2

k2 ≈ eikze−iα2+β2

2k z,

that is the Fresnel transfer function.

(b) Calculate the spatial frequency spectrum U0(α) of u0(x) =
∑
n
ane

in 2π
d x =

∑
n
ane

inKxx

U0(α, z = 0) =
1

2π

ˆ
u0(x)e

−iαxdx

=
1

2π

ˆ ∑
n

ane
in 2π

d xe−iαxdx

=
∑

anδ(nKx − α)

(c) HF (α; z) = eik0z−i α2

2k0
z in the paraxial (Fresnel) approximation:

u(x, z) =

ˆ
U0(α, 0)HF (α; z)e

iαxdα

= eik0z
∑
n

ˆ
anδ(nKx − α)e−i α2

2k0
zeiαxdα

= eik0z
∑
n

ane
−i

n2K2
x

2k0
zeinKxx
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(d) If e−i
n2K2

x
2k0

z = 1, then u(x, z) = eik0zu0(x)

e−i
n2K2

x
2k0

z = 1

⇒ n2K2
x

2k0
z = 2πm

⇒ z =
m

n2

2d2

λ0

m = m′n2 ⇒ z = m′ 2d
2

λ0
= m′LT

Problem 2.(10 points) Poisson’s spot

Consider a plane wave that propagates in the positive z-direction and which impinges at normal incidence on
a circular disk of radius a in free space, as shown in Figure 1. The scalar incident field can be written as
u(r) = Aeikz, where A is a real constant in x′-y′ plane, i.e. a unit-amplitude illumination.

Figure 1: The diffraction problem of Poisson’s spot. The main problem consists in the calculation of the field
in the positive half-space (z > 0) for a circular mask in the x′-y′ plane. Please note, the integration in the
diffraction integrals goes over the entire x′-y′ plane at z = 0. Eventually, we are interested here only for the
fields at x = y = 0, i.e., along the z-axis. The gray box denotes the area of the circular opaque disk that causes
Poisson’s spot at distance z. The arrow r′ denotes the spatial coordinate of the plane just behind the disk,
while the arrow r represents the point of our observation.

(a) Using the first Rayleigh Sommerfield diffraction formula, show that the field amplitude on the optical axis
at the distance z away the center of the disk is given by

uRS(0, 0, z) = A
z

r0
eikr0 ,

where r20 = a2 + z2.

(Hint: Use the Sommerfeld lemma
´ b
a
f(x)eikxdx ≈ f(x)

ik eikx
∣∣∣b
a
, where the approximation is justified if f(x)

is a slowly varying function, or, equivalently, in the limit k → ∞ (λ → 0).) (2 points)

(b) By using the Helmholtz and Kirchhoff theorem, prove that for the plane wave incident field, the following
Fresnel-Kirchhoff diffraction formula holds

uFK(r) =
1

2iλ
A

¨
eik|r

′−r|

|r′ − r|
(1 + cos(α)) d2r′,

where α is the angle between the outward normal direction of the disk and the vector r′ − r.

(Hint: Use G(r, r′) = eik|r′−r|

|r′−r| for Green’s function, and the approximation 1
|r′−r|2 ≈ 0.) (4 points)

2



(c) Using the derived Fresnel-Kirchoff diffraction formula, show that the field amplitude at the distance z from
the center of the disk can be written as

uFK(0, 0, z) =
A

2
eikr0

(
1 +

z

r0

)
.

(Hint: Use the approximation
´∞
r0

eikrdr ≈ − eikr0

ik and the Sommerfeld lemma
´ b
a
f(x)eikxdx ≈ f(x)

ik eikx
∣∣∣b
a
.)

(4 points)

Solution to problem 2
(a) The Rayleigh Sommerfield diffraction formula reads as

uRS(r) =
1

iλ

¨
u(r′)

eik|r
′−r|

|r′ − r|
cosα d2r′

=
1

iλ
A

ˆ r′=∞

r′=a

ˆ θ=2π

θ=0

eik|r
′−r|

|r′ − r|
z

|r′ − r|
r′dθdr′

=
2π

iλ
A

ˆ q′=∞

q′=r0

eikq
′

q′
z

q′
q′dq′

= A
z

r0
eikr0 ,

where r = (0, 0, z), cosα = z
|r′−r| . Above we applied the coordinate transformation via q′ = |r′ − r|, by

which r′dr′ = q′dq′, and r20 = a2 + z2, and the use of the Sommerfeld lemma
´∞
r0

1
xe

ikxdx ≈ − 1
ikr0

eikr0 is
made.

(b) The Helmholtz and Kirchoff theorem states that

u(r) =
1

4π

¨ [
G(r, r′)

∂u(r′)

∂n
− u(r′)

∂G(r, r′)

∂n

]
d2r′.

For the first part (by writing |r′| = r′ ),

1

4π

¨ (
eik|r

′−r|

|r′ − r|

)
∂u(r′)

∂n
d2r′ =

1

4π

¨ (
eik|r

′−r|

|r′ − r|

)
∂A

∂n
d2r′

= − ik

4π
A

¨ (
eik|r

′−r|

|r′ − r|

)
d2r′.

For the second term,

1

4π

¨
[−u(r′)

∂G(r, r′)

∂n
] = − 1

4π
A

¨ ∂[ e
ik|r′−r|

|r′−r| ]

∂n
d2r′

= − 1

4π
A

¨
cosα

(
eik|r

′−r|

|r′ − r|

)(
ik − 1

|r′ − r|

)
d2r′

≈ − ik

4π
A

¨
cosα

(
eik|r

′−r|

|r′ − r|

)
d2r′.

Thus,

u(r) = − ik

4π
A

¨
eik|r

′−r|

|r′ − r|
(1 + cos(α)) d2r′

=
1

2iλ
A

¨
eik|r

′−r|

|r′ − r|
(1 + cos(α)) d2r′.

3



(c) The Fresnel-Kirchoff diffraction formula in the optical axis reads as

uFK(r) =
1

2iλ
A

¨
eik|r

′−r|

|r′ − r|
(1 + cos(α)) d2r′

=
1

2iλ
A

¨
eik|r

′−r|

|r′ − r|
d2r′ +

1

2iλ
A

¨
eik|r

′−r|

|r′ − r|
cos(α)d2r′

=
1

2iλ
A

ˆ r′=∞

r′=a

ˆ θ=2π

θ=0

eik|r
′−r|

|r′ − r|
r′dθdr′ +

A

2

z

r0
eikr0

=
2π

2iλ
A

ˆ q′=∞

q′=r0

eikq
′

q′
q′dq′ +

A

2

z

r0
eikr0

=
2π

2iλ
A

(
−eikr0

ik

)
+

A

2

z

r0
eikr0 =

A

2
eikr0(1 +

z

r0
)

where we used
´∞
r0

eikrdr = − eikr0

ik .

Problem 3.(7 points) Fraunhofer approximation

Compute the diffraction pattern in Fraunhofer approximation for:

(a) A pinhole with radius a(
Hint :

´ 2π
0

e−ix cosφdφ = 2πJ0(x) and
´ a
0
J0(kρ)ρdρ = a2 J1(ka)

ka

)
(4 points)

(b) A sequence of N pinholes placed along the x-axis with distances of d > 2a.(
Hint :

N−1∑
n=0

xn = 1−xN

1−x

)
(3 points)

Solution to problem 3
(a) The Fourier transform in the referential plane u0(x, y) is

U0(α, β) =
1

(2π)2

ˆ ˆ +∞

−∞
u0(x, y)e

−i(αx+βy)dxdy.

We can write in cylindrical Coordinate i.e. k · r = kρ cosφ and k =
√
k2x + k2y =

√
α2 + β2 and using´ 2π

0
e−ixcosφdφ = 2πJ0(x) ,

´ a
0
J0(kρ)ρdρ = a2 J1(ka)

ka we calculate the integral

(2π)2U0(α, β) =

ˆ ˆ +∞

−∞
u0(x, y)e

−i(αx+βy)dxdy =

ˆ a

0

ˆ 2π

0

e−ikρcosφρdρdφ = 2π

ˆ a

0

J0(kρ)ρdρ = 2πa2
J1(ka)

ka
.

And finally we have

U0(α, β) =
a2

2π

J1(a
√

α2 + β2)

a
√
α2 + β2

.

The diffraction pattern in Fraunhofer approximation for a pinhole with radius a reads as:

u(x, y, z) = −(2π)2i
k

z
U0(k

x

z
, k

y

z
)eikzeik

x2+y2

2z

= −i2πa2
k

z

J1(
ka
z

√
x2 + y2)

ka
z

√
x2 + y2

eikzeik
x2+y2

2z

= −i2πa
J1(

ka
z

√
x2 + y2)√

x2 + y2
eikzeik

x2+y2

2z .
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(b) The Fourier transform of u0(x, y) for a sequence of N pinholes placed along the x-axis with distances of
d > 2a equals

UN (α, β) =

N−1∑
n=0

U0(α, β)e
iαnd

= U0(α, β)

N−1∑
n=0

eiαnd

= U0(α, β)

N−1∑
n=0

(eiαd)n

= U0(α, β)
1− eiαNd

1− eiαd

= U0(α, β)
e

iαNd
2 (e−

iαNd
2 − e

iαNd
2 )

e
iαd
2 (e−

iαd
2 − e

iαd
2 )

= U0(α, β)
sin(αNd/2)

sin(αd/2)
eiα(N−1)d/2.

The diffraction pattern in Fraunhofer approximation reads as:

u(x, y, z) = (2π)2i
k

z
UN (α, β)eikzeik

x2+y2

2z

= (2π)2i
k

z
U0(α, β)

sin(αNd/2)

sin(αd/2)
eiα(N−1)d/2eikzeik

x2+y2

2z

= 2πi
k

z

a

2π

J1

(
a

√(
k x
z

)2
+
(
k y
z

)2)
√(

k x
z

)2
+
(
k y
z

)2 sin(k x
zNd/2)

sin(k x
z d/2)

eik
x
z (N−1)d/2eikzeik

x2+y2

2z .
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