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Problem 1.(7 points) Holography

Holography involves the recording and reconstruction of optical waves. Consider a monochromatic optical wave,
with complex amplitude in some plane at z = 0 is U(x, y). We record a wave with a transparency (hologram)
with the complex transmittance t(x, y) (see Figure 1a). Optical detectors used to make transparencies (e.g.
photographic emulsion) are responsive to the optical intensity |U(x, y)|2 and therefore do not store the infor-
mation about the phase arg{U(x, y)}. A solution to this problem is mixing of the original wave (object wave)
U with a known reference wave U0 and recording their interference pattern in the z = 0 plane.

Figure 1: (a) Recording the interference pattern between the object wave and reference wave. (b) Reconstruction
of the object wave by illuminating the hologram with a reference wave. Taken from Saleh, B.E. and Teich, M.C.,
2007. Fundamentals of photonics. john Wiley & sons.

(a) Show how the information about the amplitude and phase differences between the reference wave and the
object wave can be recorded in the transparency. Hint: The transmittance t is proportional to the intensity
|U + U0|. (2 points)

(b) To reconstruct the object wave, we illuminate the hologram with the reference wave U (Figure 1b). Write
the amplitude of resulting wave with a complex amplitude in the hologram plane z = 0 in terms of the
amplitudes and intensities of the reference and object wave. Explain the meaning of the particular terms
in the obtained sum. (2 points)

(c) Assuming that the reference wave is a spherical wave centered about the point (0, 0,−d) and the object
wave is a plane wave travelling at an angle θx, determine the hologram pattern and the reconstructed wave
at z = 0. Hint: Use Fresnel approximation for the spherical wave. (3 points)

Solution to problem 1
(a) Using the hint we can show that

t ∼ |U+U0|2 = |U |2+ |U0|2+U∗
0U+U0U

∗ = I+I0+U∗
0U+U0U

∗ = I+I0+2
√
I0I cos(arg{U0}−arg{U}),
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where I0 and I are the intensities of the reference wave and the object wave, respectively, at z = 0 plane.

(b) The amplitude Ur of the resulting wave is calculated as:

Ur = tU0 ∼ U0I0 + U0I + I0U + U2
0U

∗.

The first two terms on the right hand side represent the reference wave, modulated by the sum of the
intensities of the two waves. The third term is the original wave multiplied by the intensity I0 of the
reference wave. The fourth term is a conjugated version of the original wave modulated by U0.

(c) The spherical wave can be written as

U0(x, y) =
f0(x, y)

|r− r0|
eik0|r−r0| Fresnel approx.

=
f0(x, y)

|r− r0|
eik0zeik0

x2+y2

2z ,

with r0 = (0, 0,−d) and r = (x, y, 0). The object wave can be expressed as U(x, y) = f(x, y)eikx sin θx .
The hologram pattern can be then obtained

t ∼ |U0 + U |2 =
f2
0

d2
+ f2 +

f0f

d2
e−ik0zeikx sin θx +

ff0
|d|

e−ikx sin θxeik0zeik0
x2+y2

2d .

And the reconstructed wave reads

Ur(x, y) = tU0 =

(
f3
0

d3
+

f2f0
d

)
eik0deik0

x2+y2

2d +
f2
0 f

d3
eikx sin θx +

f2
0

d2
e−ikx sin θxe

ik02
(
d+ x2+y2

2d

)
.

Problem 2.(17 points) Principal axis of anisotropic crystals

Consider an anisotropic crystal characterized in the laboratory coordinate system by the following relative
permittivity tensor

ε̂ =


a 0 0

0 1.25a αa

0 αa 1.75a

 ,

where a is some non-zero number that eventually defines the material properties.
Hint: The dielectric functions are the eigenvalues of the permittivity tensor and the principal axes are defined
by the corresponding eigenvectors.

(a) Find all possible solutions for α such that the crystal is uniaxial. (5 points)

(b) For α’s obtained from the previous question, rewrite the crystal permittivity tensor in the respective principal
axes. (3 points)

(c) For the real positive solution of α from the previous question, write the principal axes of the crystal in
terms of the laboratory coordinate basis. (7 points)

(d) How much does the crystal need to be rotated with respect to laboratory coordinate such that we have a
diagonalized permittivity tensor in the new coordinate system? (2 points)

Solution to 2
(a) The permittivity of the crystal in its principal axes is equivalent to the eigenvalues of the permittivity

tensor. Hence, we have to solve the following algebraic equation.
a 0 0

0 1.25a αa

0 αa 1.75a



x1

x2

x3

 = λ


x1

x2

x3


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To find λ, the determinant of the following matrix should be zero.∣∣∣∣∣∣∣∣∣
a− λ 0 0

0 1.25a− λ αa

0 αa 1.75a− λ

∣∣∣∣∣∣∣∣∣ = 0,

which means

(a− λ)[(1.25a− λ)(1.75a− λ)− α2a2] = 0.

A uniaxial crystal is characterized by two equal entries in the permittivity in principal axes. This implies
that λ in the above equation share the same value. There are two possible configuration for this problem:

• Since the first obvious eigenvalue is a, one of the possible scenario is that the solution of [(1.25a −
λ)(1.75a− λ)− α2a2] should be a as well. Plugging this solution for λ into the equation above results
in:

[(1.25a− a)(1.75a− a)− α2a2] = 0

↓
[(0.25a)(0.75a)− α2a2] = 0

↓

[
3

16
− α2] = 0

↓

α = ±
√

3

16
.

• Another possible solution requires

[(1.25a− λ)(1.75a− λ)− α2a2] = 0

↓

(
5

4
a− λ)(

7

4
a− λ)− 3

16
a2 = 0

↓

λ2 − 3aλ+ (
35

16
− α2)a2 = 0.

For the above equation to have 2 degenerate solutions, the quadratic equation must satisfy

9a2 − 4 · (35
16

− α2)a2 = 0

↓
36

16
= (

35

16
− α2)

↓

α = ±i

√
1

16
.

(b) • For α2 = 3
16 , we have eigenvalues a, a, 2a, so that

a 0 0

0 a 0

0 0 2a

 .
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• For α2 = − 1
16 , we have eigenvalues a, 1.5a, 1.5a, so that

a 0 0

0 1.5a 0

0 0 1.5a

 .

Above, the order of eigenvalues in the 3 × 3 matrix is not yet determined, so you can put them in any
order. However, note that the eigenvalues should be ordered in the same order of eigenvectors that span
the 3-dimensional coordinate, which we will make clear in the following.

(c) We will use only the case of α =
√

3
16 in what follows. The principal axis are the eigenvectors.

• For the eigenvector 2a, to find the corresponding eigenvector, we substitute that eigenvalue into the
original matrix equation as follows.

a 0 0

0 1.25a
√

3
16a

0
√

3
16a 1.75a




x1

x2

x3

 = 2a


x1

x2

x3

 ,

from which one can get two equations

x1 = 0, and 1.25x2 +

√
3

16
x3 = 2x2.

↓

x2 =
1√
3
x3.

Then the eigenvector (after normalization) has to have a form of

v̂3 =


0

± 1
2

±
√
3
2

 .

• For the eigenvector a, to find the corresponding eigenvector, we substitute that eigenvalue into the
original matrix equation as follows.

a 0 0

0 1.25a
√

3
16a

0
√

3
16a 1.75a




x1

x2

x3

 = a


x1

x2

x3

 ,

from which one can get two equations

ax1 = ax1 → x1 = undetermined (i.e., can be any value)

1.25x2 +

√
3

16
x3 = x2 → x2 = −

√
3x3.

The other equation, gives the same result. Then the eigenvector has to have a form of

v̂1,2 =


undetermined

−
√
3x3

x3

 ,
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that constitutes a ring on the surface of a unit sphere in 3-dimensional coordinate, i.e., any point on
the surface can be a normalized eigenvector and this is due to the degeneracy. Most conventionally,
for simplicity, we choose one eigenvector by putting 1 to the x-component, and 0 to x3, so that

v̂1 =


1

0

0

 ,

and the other is given as

v̂2 =


0

−
√
3
2

1
2

 .

Please note that there there are many possible eigenvectors above. They eventually turn out to span 8
sets of 3-dimensional coordinate systems that are under the π-rotation symmetry to each other. Any
of four sets can be solution, however for making a principal axes, we want orthogonality condition and
the cross product relation to hold, i.e.,

v̂j · v̂k = δjk, and v̂1 × v̂2 = v̂3.

Therefore the complete basis set is:

Set 1 : v̂1 =


1

0

0

 , v̂2 =


0

−
√
3
2

1
2

 , v̂3 =


0

− 1
2

−
√
3
2

 ,

These sets are also possible:

Set 2 : v̂1 =


1

0

0

 , v̂2 =


0
√
3
2

− 1
2

 , v̂3 =


0

1
2
√
3
2

 ,

Set 3 : v̂1 =


−1

0

0

 , v̂2 =


0

−
√
3
2

1
2

 , v̂3 =


0

1
2
√
3
2

 ,

Set 4 : v̂1 =


−1

0

0

 , v̂2 =


0
√
3
2

− 1
2

 , v̂3 =


0

− 1
2

−
√
3
2

 ,

(d) To diagonalize the permittivity tensor, the rotation should be around the x-axis, we choose the set 1 and 2
here (one is enough for the solution). So, comparing it with the rotation matrix, i.e.,

Set 1 :


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 =


1 0 0

0 −
√
3
2 − 1

2

0 1
2 −

√
3
2

 → θ = π − π

6
,

Set 2 :


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 =


1 0 0

0
√
3
2

1
2

0 − 1
2

√
3
2

 → θ = −π

6
.

Any of those can be accepted as the solution.
For your information:
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(i) The real part of a permittivity tensor is symmetric.

(ii) The complex permittivity is Hermitian (symmetric real part and antisymmetric imaginary part) when
there is no attenuation and dissipation of energy during propagation.

(iii) In case we have attenuation or energy dissipation along propagation, the complex permittivity tensor
is symmetric but not Hermitian.

(iv) Complex values for off-diagonal elements of the permittivity tensor does not imply loss as far as it is
Hermitian. However, complex values of the diagonal elements imply loss.

(v) If the permittivity tensor is Hermitian: 1) All its eignevalues are real. 2) All its eigenvectors cor-
responding to non-degenerate eigenvalues are orthogonal and can be made orthonormal. 3) All its
eigenvectors corresponding to degenerate eigenvalues can be chosen to be orthogonal or orthonormal.

(vi) If the permittivity is symmetric but not Hermitian, then it might not be diagonalized.
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