
Theoretical Optics

Exercise 6 � Mock Exam

C. Rockstuhl, M. Paszkiewicz, N. Perdana, M. Vavilin /50 points

Institute of Theoretical Solid State Physics Drop point: Your tutorial group in ILIAS

Karlsruhe Institute of Technology Due Date: July 21st 2022, 16:00

Problem 1.(12 points) Material properties in Maxwell's equations

(a) Write down Maxwell's equations in matter in the presence of both polarization and magnetization but
without free charges and their currents. Use a time domain representation. Name all quantities that appear
in these equations. (3 points)

(b) From now on, assume non-magnetic, linear, homogenous, isotropic, and dispersive media. The materials
are characterized by a response function in time-domain and a susceptibility in frequency domain. How do
they link the electric �eld to the polarization? How are response function and susceptibility connected?
Write down mathematical expressions. (3 points)

(c) De�ne the dielectric function and derive the vectorial Helmholtz equation in frequency domain

∆Ē(r, ω) +
ω2ε(ω)

c20
Ē(r, ω) = 0.

Write down mathematical expressions for its non-trivial solutions. (3 points)

(d) From n̄(ω) =
√
ε(ω), �nd explicit expressions for the real and imaginary parts of the complex refractive

index n̄(ω) = n(ω) + iK(ω) as a function of <(ε(ω)) and =(ε(ω)). (3 points)

Problem 2.(13 points) Far �eld di�raction from a circular aperture

Consider a circular aperture with a diameter of D, whose transmittance function can be written as

tA(ρ) = circ

(
ρ

D/2

)
,

where ρ =
√
x2 + y2 represents a radius coordinate in the plane of the aperture. Find the Fraunhofer di�raction

pattern from the circular aperture known as the Airy pattern. (Hint :
´ ´

circ
(√

x2 + y2
)
e−i(αx+βy)dxdy =

2πJ1(
√
α2+β2)√

α2+β2
) (13 points)

Problem 3.(13 points) Propagation in anisotropic media

A plane wave of frequency ω0 with displacement vector of amplitude D(z, t) = A cos(ω0t − kz) is incident on
a planar uniaxial crystal slab of length L, with ε1(ω) = εe(ω) and ε2(ω) = ε3(ω) = εo(ω) (see Fig. 1). The
propagation direction k is orthogonal to the optical axis of the crystal, and the wave is linearly polarized at an
angle β with the ordinary polarization direction. The vector D(z, t) at the input plane can be decomposed into
the ordinary (ô) and extraordinary (ê) wave directions. It is written as{

Do(z = 0, t) = A cos(β) cos(ω0t)

De(z = 0, t) = A sin(β) cos(ω0t),

each of which will experience a di�erent refractive index while propagating through the slab, and consequently
they will travel with di�erent velocities in the medium. This phase lag between the two components will alter
the polarization state of the �eld, i.e., the output �eld D(L, t) will be, in general, elliptically polarized.
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Figure 1: a) Uniaxial crystal slab. b) Direction of the input vector D(0, t) and
output vector D(L, t) respect to the orthogonal coordinate reference system
spanned by the ordinary and extraordinary wave directions.

(a) Write down the expressions of the phases φo and φe accumulated by the respective components of the �eld
after propagating through the slab. (3 points)

(b) The vector D(L, t) makes an angle α(t) with the ordinary polarization direction. Write down the output
�eld D(L, t) in the basis ô and ê at the exit face, and prove that

tan(α(t)) =
De(L, t)

Do(L, t)
= tan(β)

cos(ω0t− φe)
cos(ω0t− φo)

.

(3 points)

(c) Find the value of L that gives a phase retardation φe − φo = 2hπ, with h ∈ Z, and verify that the
corresponding value of α(t) is α(t) = β. What is the state of polarization of the output �eld D(L, t) with
respect to the incident one?
(Useful formula: cos(a+ b) = cos(a) cos(b)− sin(a) sin(b).) (4 points)

(d) Find the value of L that gives a phase retardation φe − φo = (2h + 1)π, with h ∈ Z, and show that the
corresponding value of α(t) is α(t) = −β. What is the state of polarization of the output �eld D(L, t) with
respect to the incident one? (3 points)

Problem 4.(12 points) Temporal coherence of a stochastic process. (It can be solved after the
18 July 2022 lecture.)

Consider the ergodic stochastic process that describes a �uctuation of the output of a laser due to phase noise.
The associated electric �eld can be written as

F (t) =
A√
πT

e−
t2

T2 e−i(ω0t+φ),

where T is the pulse duration, and φ is a random variable given from a uniform distribution in an interval
[0, 2π).

(a) Calculate the autocorrelation function G(τ) = 〈F ∗(t)F (t+ τ)〉. (4 points)

(b) Calculate the power spectral density S(ω) by means of the Wiener-Khinchin theorem. (4 points)

(c) Calculate the coherence time τc de�ned as τc =
´ +∞
−∞ |g(τ)|2dτ , where g(τ) is the complex degree of temporal

coherence. (4 points)

Hint : Useful integral identity: 1√
2π

´ +∞
−∞ ecxe−

(bx)2

2 dx = 1
b e

c2

2b2 for b such that <[b2] > 0.
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Solution to problem 1

(a)

∇ ·B = 0∇×E = −∂B
∂t
∇ ·D = 0∇×H =

∂D

∂t

with
B = µ0(H + M)D = ε0E + P .

Here, E andH represent the vectors of the electric and magnetic �elds, whileD andB stand for the electric
displacement and the magnetic induction, respectively. P is the polarization, and M the magnetization of
the medium.

(b) Response function R(r, τ) is given via

P (r, t) = ε0

ˆ t

−∞
R(r, t− t′)E(r, t′)dt′

and susceptibility χ(1)(r, ω) via
P̄ (r, ω) = ε0χ

(1)(r, ω)Ē(r, ω).

They are conneced by means of a FT:

R(t) =

ˆ ∞
−∞

χ(1)(ω)e−iωtdω.

(c) From the last subsection one gets
P̄ (r, ω) = ε0χ(ω)Ē(r, ω),

hence
D̄ = ε0Ē + P̄ = ε0(1 + χ(ω))Ē = ε0ε(ω)P̄ ,

where we de�ned the dielectric function ε(ω). Using frequency represenation of ME one gets

∇×∇× Ē − ω2ε(ω)

c2
Ē = 0.

Remembering
∇×∇× Ē = ∇∇ · Ē −∆Ē

one arrives at

∆Ē +
ω2ε(ω)

c2
Ē = 0.

The non-trivial solutions are
E = E0e

−ik·r, k = ±ω
c

√
ε(ω)

(d) One should use two equations
n̄2 = <(ε) + i=(ε), n̄ = n+ iK.

Then, on one hand
n2 −K2 = <(n̄2) = <(ε),

and on the other
n2 +K2 = |n̄|2 = <(ε)2 + =(ε)2.

From the last two equations follow the required

n =
1√
2

√√
<(ε)2 + =(ε)2 + <(ε),K =

1√
2

√√
<(ε)2 + =(ε)2 −<(ε).
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Solution to problem 2

(a) In the Fraunhofer approximation, the �eld can be obtained by

u(x, y; z) =
eikzei

k
2z (x

2+y2)

iλz

ˆ ˆ
ur(r

′)e−i(k
x
z x
′+k yz y

′)dx′dy′.

Here,

u(r′) = tA(ρ)u0 = u0 circ

(√
x′2 + y′2

D/2

)
= u0 circ

(√
X ′2 + Y ′2

)
,

where

X ′ =
2x′

D
, and Y ′ =

2y′

D
.

Via the 2D Jacobian matrix,

dx′dy′ =

(
∂x′

∂X ′
∂y′

∂Y ′
− ∂x′

∂Y ′
∂y′

∂Y ′

)
dX ′dY ′ =

D2

4
dX ′dY ′.

Then,

u(x, y; z) =
eikzei

k
2z (x

2+y2)

iλz

D2

4
u0

ˆ ˆ
circ

(√
X ′2 + Y ′2

)
e−i(k

x
z
D
2 X
′+k yz

D
2 Y
′)dX ′dY ′

=
eikzei

k
2z (x

2+y2)

iλz

D2

4
u0

2πJ1

(√
α2 + β2

)
√
α2 + β2

, where α = k
x

z

D

2
and β = k

y

z

D

2

=
eikzei

k
2z (x

2+y2)

iλz
Au0

2J1
(
k
z
D
2 ρ
)

k
z
D
2 ρ

, where A = πD2/4

=
eikzei

k
2 (x

2+y2)

i
Au0

2J1
(
k
z
D
2 ρ
)

k
z
D
2 ρ

Thus,

I(x, y; z) = |u(x, y; z)|2 = I0

(
2J1

(
k
z
D
2 ρ
)

k
z
D
2 ρ

)2

, where I0 = (Au0)2.

Solution to 3

(a) The propagation direction of the plane wave is orthogonal to the optical axis, so the normal modes are excited
into the structure. This means that the component De will experience a refractive index ne(ω) =

√
εe(ω),

while the component Do will experience a refractive index no(ω) =
√
εo(ω). The phase accumulated by De

is then

φe = keL =
2π

λ0
neL,

while the phase accumulated by Do is

φo = koL =
2π

λ0
noL.

(b) The output �eld can be written as{
Do(z = L, t) = A cos(β) cos(ω0t− φo)
De(z = L, t) = A sin(β) cos(ω0t− φe).

If we perform the ratio of both equations, we obtain

tan(α(t)) =
De(L, t)

Do(L, t)
= tan(β)

cos(ω0t− φe)
cos(ω0t− φo)

(1)
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(c) The phase di�erence φe − φo can be written as

φe − φo =
2π

λ0
(ne − no)L. (2)

From this expression it follows

φe − φo = 2hπ ⇒ L = h
λ0

(ne − no)
, h 6= 0.

In order to calculate α(t), we can write φe = φo + 2hπ, and substitute it in the expression (1), obtaining

tan(α(t)) =
De(L, t)

Do(L, t)
= tan(β)

cos(ω0t− φo − 2hπ)

cos(ω0t− φo)
.

We can now use the formula cos(a+ b) = cos(a) cos(b)− sin(a) sin(b), and write

tan(α(t)) = tan(β)
cos(ω0t− φo) cos(−2hπ)− sin(ω0t− φo) sin(−2hπ)

cos(ω0t− φo)
= tan(β),

which implies α = β. The output �eld is linearly polarized and it oscillates in the same polarization plane
of the input �eld.

(d) We can use eq (2), and write

φe − φo = (2h+ 1)π ⇒ L = (2h+ 1)
λ0

2(ne − no)

In order to calculate α(t), we can write φe = φo+(2h+1)π, and substitute it in the expression (1), obtaining

tan(α(t)) =
De(L, t)

Do(L, t)
= tan(β)

cos(ω0t− φo − (2h+ 1)π)

cos(ω0t− φo)
,

that can be rewritten as

tan(α(t)) = tan(β)
cos(ω0t− φo) cos((2h+ 1)π) + sin(ω0t− φo) sin((2h+ 1)π)

cos(ω0t− φo)
= − tan(β),

which implies α(t) = −β. The output �eld is linearly polarized and the polarization plane is rotated of 2β
with respect to the polarization plane of the input �eld.

Solution to 4

(a)

G(τ) = 〈F ∗(t)F (t+ τ)〉

=

ˆ +∞

−∞

(
A√
πT

)2

e−
t2

T2 e−
(t+τ)2

T2 eiω0te−iω0te−iω0τe−iφeiφdt

=
A2

πT 2
e−iω0τe−

τ2

T2

ˆ +∞

−∞
e−

2t2

T2 e−
2tτ
T2 dt =

A2

√
2πT

e−
τ2

2T2 e−iω0τ

(b) From the Wiener-Khinchin theorem we have

S(ω) = F [G(τ)] =
1

2π

ˆ +∞

−∞
G(τ)eiωτdτ

If we call Γ(ω) = F
[

A2
√
2πT

e−
τ2

2T2

]
= A2

2π e
−T2ω2

2 , Θ(ω) = F
[
eiω0τ

]
= δ(ω − ω0), we can use the convolution

theorem

S(ω) = Γ(ω) ∗Θ(ω) =
A2

2π
e−

T2(ω−ω0)2

2 .
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(c) The coherence time is given by

τc =

ˆ +∞

−∞
|g(τ)|2dτ,

where g(τ) is the complex degree of optical coherence, given by g(τ) = e−
τ2

2T2 e−iω0τ . Thus we have

τc =

ˆ +∞

−∞
e−

τ2

T2 dτ = T
√
π.
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