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1 Dispersive medium

In the lecture, we discussed how material properties like nonlinearity, anisotropy, inhomogeneity,
and a dispersion, can be described in Maxwell’s equations. To study these phenomena we can
consider a wave propagation through a medium that posses aforementioned material properties.
Here we concentrate our discussion on the dispersive response of the materials to electromagnetic
waves. For this purpose, we assume a linear, isotropic, homogeneous, and non-magnetic material
with no external charge and current. The wave equation in terms of the polarization density
vector P and the current density J (see the script for details) is then written as

∇2E(r, t) = −µ0ε0
∂2

∂t2
E(r, t)− µ0

∂2

∂t2
P(r, t)− µ0

∂

∂t
J(r, t). (1)

The above wave equation is in time domain and using the Fourier transformation can be trans-
formed into the frequency domain. Finally, withP(r, ω) = ε0χ(ω)E(r, ω)1 and J(r, ω) = σ(ω)E(r, ω),
it takes the form of

∇2E(r, ω) = εr(ω)
ω2

c2
E(r, ω). (2)

Here, the relative dielectric function εr(ω) = 1 + χ(ω) + iσ(ω)
ε0ω

is defined with the susceptibility
χ(ω) and conductivity σ(ω) that characterize the optical responses of material. As shown in
Table 1, we differentiate four cases depending on P and J.

P(r, ω) J(r, ω) Model Relative dielectric function

case I = 0 = 0 Vacuum εr = 1
case II ̸= 0 = 0 Bound-electron model εr(ω) = 1 + χ(ω)

case III = 0 ̸= 0 Free-electron model εr(ω) = 1 + iσ(ω)
ε0ω

case IV ̸= 0 ̸= 0 General material model εr(ω) = 1 + χ(ω) + iσ(ω)
ε0ω

Table 1: Classification of different material models depending on P and J

In what follows, we derive the relative dielectric functions for the second and third cases in
Table 1, for each of which we assume that the material consists of an ensemble similar atoms
with no coupling. Of course, such assumption is not fully realistic, but descriptive enough in
many optical scenarios and insightful for understanding the physical mechanism behind. These
assumptions allow us to describe all electrons in the same manner, and the overall response is just
a superposition of the individual entities, i.e., the single-atom multiplied by the density N = n/V
where n denotes the total number of interacting electrons in a material of volume V .

1P(r, t) = ε0
∫∞
−∞ R(t− t′)E(r, t′)dt′ → P(r, ω) = ε0χ(ω)E(r, ω) via the convolution theorem.
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1.1 Lorentz model
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Figure 1: Forces acting on a bound electron. The displacement vector is represented by s, and
the polarization vector is defined as p = −es.

The Lorentz model is a phenomenological model that describes the electromagnetic response of
bound electrons in a material, e.g., dielectrics or semiconductors. In this model, the electron
bound to a nucleus is treated as a harmonic oscillator (see Fig. 1) with a characteristic frequency
ω0, which can be determined either empirically or by the first-principle calculation of quantum
mechanics. The mechanical motion of the bound electron for a given external electric field E can
be described in terms of the displacement vector s from its equilibrium position. The equation of
motion is written as

me
d2s(r, t)

dt2
= −meγ

ds(r, t)

dt
−Ks(r, t)− eE(r, t),

where γ denotes damping, K = ω2
0me is the spring constant, e represents the electric charge and

me is the effective mass of the bound electron. This can be transformed into the frequency domain
via the Fourier transformation, yielding

−ω2mes(r, ω) = −iωmeγs(r, ω)−meω
2
0s(r, ω)− eE(r, ω),

from which one gets

s(r, ω) =
−e/me

ω2
0 − ω2 − iωγ

E(r, ω).

The polarization p(r, ω)2 induced for a single electron by the external field E(r, ω) can be written
as

p(r, ω) = −es(r, ω) =
e2/me

ω2
0 − ω2 − iωγ

E(r, ω).

Then, the total polarization density P(r, ω) over the volume V for n identical electrons can be
written as

P(r, ω) =
n

V
p(r, ω) = ε0

Ne2

meε0

ω2
0 − ω2 − iωγ

E(r, ω),

where N = n/V , and we define the constant quantity f0 = Ne2

meε0
as the “oscillator strength”.

From the relation P(r, ω) = ε0χ(ω)E(r, ω), one can obtain the susceptibility χ(ω) as

χ(ω) =
f0

(ω2
0 − ω2)− iωγ

,

whereby the relative permittivity εr(ω) is defined as εr(ω) = 1 + χ(ω) = ε′r + iε′′r .

2For a single electron forming the dipole with its positive charge partner, The polarization vector p is defined
as p = −ed, where q is the charge and d is the distance
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Example

When a single-atomic gas or model is considered, it shows a single-resonance behavior as shown
in Fig. 2. It presents the behavior of the real part ε′r(ω), and the imaginary part ε′′r (ω) of the
dielectric function εr(ω) around the resonant frequency ω0. The plot of ε′′r (ω) shows a very
pronounced absorption peak at the resonant frequency ω0, and the width of the peak depends on
the damping term γ. This graph depicts the “Lorentzian” dispersion model.
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Figure 2: Real and imaginary parts of the permittivity εr(ω) of the Lorentz model

It is interesting to see that there are several regimes showing different optical behaviors with the
frequency ω. Apart from the regimes near resonance ω0 where |ε′′r (ω)| ≫ |ε′r(ω)| and so a large
absorption takes place, which is not very interesting in optics, we have four interesting regimes
when the plane wave solutions are considered.

1. When ε′r(ω) > 0 and ε′′r (ω) ≈ 0, undamped homogeneous waves exist, or evanescent waves
exist at interfaces.

2. When ε′r(ω) > 0 and ε′′r (ω) > 0, weakly damped quasi-homogeneous waves exist.

3. When ε′r(ω) < 0 and ε′′r (ω) > 0, strongly damped quasi-homogeneous waves exist.

4. When ε′r(ω) < 0 and ε′′r (ω) ≈ 0, evanescent waves exist at interfaces.

We do NOT explain the aforementioned regimes here in details since they require more math-
ematics and discussions, but please note that such a phenomenological model is very useful for
understanding the physical mechanism that determines various optical responses of the material
with an operating frequency.
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1.2 Drude model

The Drude dielectric function describes the electromagnetic response of free electrons in a material,
e.g., metals or excited semiconductors. In this case, the single electron is not bound to the nucleus
(i.e., no restoring force, ω0 = 0, when compared to the Lorentz model), but it is only subject
to the external electromagnetic field, and the drag exerted by the ions in a metal. We use the
same equation of motion used in the Lorentz model with ω0 = 0, but it is useful to formulate the
equation of motion in terms of the velocity v = ds

dt of the free electron:

me
dv(r, t)

dt
= −meγv(r, t)− eE(r, t),

where the damping factor γ takes into account the scattering of the electrons by the ions. Via
the Fourier transformation, the velocity reads in the frequency domain

v(r, ω) =
−e/m

−iω + γ
E(r, ω).

If a free-electron distribution, “called free-electron gas”, with density N is considered, the current
density J̄ induced by such moving electrons can be written3 as

J(r, ω) = −Nev(r, ω) =
Ne2

meγ

1

1− i(ω/γ)
E(r, ω) = σ(ω)E(r, ω)

where σ(ω) is the “dynamic conductivity” of the electrons:

σ(ω) =
Ne2

meγ

1

1− i(ω/γ)
=

σ0

1− i(ω/γ)
,

where σ0 = Ne2

meγ
is called “static conductivity” such that σ(ω) = σ0 for a static field, i.e., when

ω = 0. The dielectric function for the free-electron gas is then given by

εr(ω) = 1 + i
σ(ω)

ε0ω
= 1− ω2

p

ω(ω + iγ)
,

where ωp =
(

Ne2

meε0

)1/2

is called “plasma frequency” of the free-electron gas.

3The current density is defined by the electric current per unit area of cross section, i.e., J = Current
Area

= ∆Q
A∆t

=
− ne

A∆l/v
= −Nev, where the total charge of n electrons, ∆Q = ne, passes through the area A during the time ∆t

with an average speed of v.
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Example: a plane wave illumination at a normal incidence

Let us consider a plane wave illumination at the interface between an air and the bulk metal
described by the Drude model. From the Fresnel equations, the reflection coefficients r for s- and
p-polarized incident waves are obtained in terms of the refractive indices (nair and nmetal) and
incident/transmitted angle (θi/θt) as

rs =
nair cos θi − nmetal cos θt
nair cos θi + nmetal cos θt

and rp =
nair cos θt − nmetal cos θi
nair cos θt + nmetal cos θi

, (3)

respectively. When θi = 0, then θt = 0, so the reflection coefficients exhibit the polarization-
independent behavior as

rs = rp =
1−

√
εr(ω)

1 +
√
εr(ω)

, (4)

for which we use nair = 1 and nmetal =
√
εr(ω). So the reflected intensity is R =

∣∣∣∣
√

εr(ω)−1√
εr(ω)+1

∣∣∣∣
2

.

Figure 3(a) shows the permittivity ε(ω) of the free-electron gas, and one can see that the real
part ε′r is negative for ω < ωp. This means that light cannot propagate through the free-electron
gas in this frequency region, and therefore R = 1 in the absence of absorption. For ω > ωp, light
propagates through the metal and so R is no longer unity (see Fig. 3(b), where γ = 0 is assumed
for simplicity).

(a) (b)

Figure 3: (a) Real and imaginary parts of the permittivity εr(ω) of sodium, an example of Drude
metal. (b) Reflectivity of a Drude metal. R = 1 for ω < ωp, for which the damping constant is
set to γ = 0. When γ ̸= 0, the abrupt drop of the curve at ωp is smoothened.
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2 Method of contour integration

Here we introduce the method of contour integration, useful for certain line integrals that are not
easy to calculate based on the direct integration. The mathematical methods introduced in the
following can be applied to all problems in the topics treated in the lecture on Theoretical Optics.
First of all, we lay out several basic mathematical theorems from the complex analysis below and
then we demonstrate a simple example to discuss how they can be used in practice.

■ Analyticity of a function and the Cauchy-Riemann equations

In mathematics, a holomorphic function is a complex-valued function of complex variables, com-
plex differentiable in a neighborhood of every point in its domain. The existence of a complex
derivative in a neighborhood is a very strong condition, for it implies that any holomorphic func-
tion is actually infinitely differentiable and equal to its own Taylor series (analytic). Though the
term analytic function is often used interchangeably with “holomorphic function”, the word “ana-
lytic” is defined in a broader sense to denote any function (real, complex, or of more general type)
that can be written as a convergent power series in a neighborhood of each point in its domain.
Note that all holomorphic functions are complex analytic functions, and vice versa. In addition,
the phrase ”holomorphic at a point z0” means not just differentiable at z0, but differentiable
everywhere within some neighborhood of z0 in the complex plane.

The condition of complex differentiability of a function f(z) = u(z) + iv(z) in a neighborhood of
a point z0 = x0 + iy0 implies that the limit:

L = lim
|δ|→0

f(z0 + |δ|eiϕ)− f(z0)

|δ|eiϕ (5)

exists and is the same for any angle ϕ ∈ [0, 2π]. This means that the limit L is the same
independent of the direction that we approach the point z0. By making use of the Wirtinger

derivative ∂
∂z = 1

2

(
∂
∂x − i ∂

∂y

)
it is straightforward to show that approaching z0 along the two

axis we get the following:

L =
1

2

(
∂u

∂x
+ i

∂v

∂x

)∣∣∣∣
z0

, for ϕ = 0, i.e.
∂

∂y
= 0, (6)

L =
1

2

(
∂v

∂y
− i

∂u

∂y

)∣∣∣∣
z0

, for ϕ = π/2, i.e.
∂

∂x
= 0. (7)

Equating the two results gives the Cauchy-Riemann equations:

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
. (8)

It can by shown that the Cauchy-Riemann equations guarantee the existence of the limit L for
any approaching direction, i.e. for any angle ϕ. That is to say that they are sufficient conditions
for the function f to be complex differentiable, i.e. holomorphic, around z0.

■ Cauchy’s integral theorem

The theorem says that if a function f(z) is holomorphic everywhere inside a domain D of the
complex plane that is enclosed by a contour C, then the following property holds true:

∮

C

f(z) dz = 0. (9)
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Simple proof. Writing z as z = x+ iy and f(z) as f(z) = u+ iv then gives

∮

C

f(z) dz =

∮

C

(u+ iv)(dx+ idy) =

∮

C

(udx− v dy) + i

∮

C

(v dx+ u dy) . (10)

Making use of the Green’s theorem we have that

∮

C

f(x, y)dx± g(x, y)dy = ±
∫∫

D

(
∂g

∂x
∓ ∂f

∂y

)
dxdy. (11)

We may then replace the integrals around the closed contour C with an area integral throughout
the domain D that is enclosed by C as follows

∮

C

f(z) dz = −
∫∫

D

(
∂v

∂x
+

∂u

∂y

)
dxdy + i

∫∫

D

(
∂u

∂x
− ∂v

∂y

)
dxdy. (12)

However, since we assumed that f(z) is holomorphic everywhere in D, we have that the Cauchy-
Riemann equations (Eq. (8)) apply everywhere in D. This makes the surface integrals on the right
hand side of the previous equation vanish, finally giving Cauchy’s integral theorem:

∮
C
f(z) dz =

0.

■ Laurent series expansion and Cauchy’s integral formula

Any complex function f(z) that is holomorphic everywhere inside an annulus (ring) centered at
z0, defined by z : R− < |z − z0| < R+, can be expanded there into a convergent power series.
Such a so called Laurent series expansion of f(z) around z0 reads as:

f(z) =

+∞∑

n=−∞
an(z0)(z − z0)

n. (13)

• If f(z) is an entire function, i.e. if it is holomorphic everywhere in the complex plane, then
we have that an(z0) = 0 for all negative integer terms with n < 0. Such is also the case if
just f(z) is holomorphic in the neighborhood of z0.

• If R− → 0 and an(z0) = 0 for all n < −N − 1, then we say that f(z) has a pole (or else a
removable singularity) of order N at z0.

• If R− → 0 and the sum of the Laurent series extends infinitely to n = −∞, then we say
that f(z) has an essential singularity at z0.

• It is straightforward to show from the above definition that if f(z) is holomorphic in the
neighborhood of z0, then we have that:

an(z0) =
f (n)(z0)

n!
. (14)

• An alternative way to calculate the coefficients an(z0) is provided by Cauchy’s integral
formula. Instead of differentiation at z0, this time we make use of a (counter-clockwise)
contour integral over a closed contour C (with winding number one) that encloses a domain
D on the complex plane where f(z) is holomorphic everywhere, and, also, the point z0 is
located inside D. Then it can be shown that:

an(z0) =
1

2πi

∮

C

f(z)

(z − z0)n+1
dz. (15)

We can prove the above generalized Cauchy’s integral formula by working as follows. First,
since f(z) is holomorphic everywhere insideD, we can make use of Cauchy’s integral theorem
and change the contour of integration into a circle CR with radius R centered at z0 and
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being enclosed inside C, with the integral in the right hand side of the equation remaining
unchanged since f(z) is holomorphic everywhere between C and CR. Hence, we have:

1

2πi

∮

C

f(z)

(z − z0)n+1
dz =

1

2πi

∮

CR

f(z)

(z − z0)n+1
dz. (16)

Then we parametrize CR by introducing the angle/variable ϕ. On CR we have that z =
z0 +Reiϕ, with ϕ ∈ [0, 2π] and dz = iReiϕdϕ. Then we take the following:

1

2πi

∮

CR

f(z)

(z − z0)n+1
dz =

1

2π

∫ 2π

0

f(z0 +Reiϕ)

(Reiϕ)n
dϕ. (17)

Then we expand f(z) in Laurent series around z0 (Eq. (13)) and we finally take the desired
result as follows:

1

2π

∫ 2π

0

f(z0 +Reiϕ)

(Reiϕ)n
dϕ =

1

2π

∫ 2π

0

+∞∑

n′=0

an′(z0)(Re
iϕ)n

′−ndϕ =

+∞∑

n′=0

an′(z0)δnn′ = an(z0). (18)

Note that δnn′ is the Kronecker delta and the sum over n′ here starts from zero since f(z)
is holomorphic around z0 and, therefore, all the negative terms in the series are zero.

■ Residues of a meromorphic function

Let’s consider now a complex function f(z) which is meromorphic. That is to say f(z) is holo-
morphic everywhere in the complex plane apart from a countable set of discrete points where it
has isolated poles. Let N be the total number of the poles and zj , oj (with j = 1, ..., N) be the
position and the order of each such pole respectively. As the residue of f at zj , Res(f, zj), we
define to be the coefficient a−1(zj) of the Laurent series expansion of f around zj :

Res(f, zj) ≜ a−1(zj). (19)

Next, let us prove the following two equivalent definitions of the residues:

Res(f, zj) ≜ a−1(zj) ≡ 1

2πi

∮

Sj

f(z)dz ≡ 1

(oj − 1)!
lim
z→zj

[
doj−1

dzoj−1
(z − zj)

ojf(z)

]
. (20)

The first alternative definition of the residue Res(f, zj) involves a (counter-clockwise) integration
along the contour Sj of a circle with center z = zj and radius Rj that is small enough so that
there is no other pole enclosed inside the circle apart from the one at its center. In order to prove
the equivalence we will work as follows. Expanding f(z) in Laurent series around the pole of
order oj located at z = zj , and parametrizing again the contour of the integral Sj by introducing
the angle/variable ϕ and writing z = zj +Rje

iϕ, we get:

1

2πi

∮

Sj

f(z)dz =
1

2πi

∮

Sj

+∞∑

n=−oj

an(zj)(z − zj)
ndz

=
1

2π

∫ 2π

0

+∞∑

n=−oj

an(zj)(Rje
iϕ)n+1dϕ

=

+∞∑

n=−oj

an(zj)δn,−1

= a−1(zj). (21)
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The second alternative definition of the residue Res(f, zj) involves a differentiation at z = zj .
Expanding f(z) in Laurent series around the pole of order oj located at z = zj we get that:

1

(oj − 1)!
lim
z→zj

[
doj−1

dzoj−1
(z − zj)

ojf(z)

]
=

1

(oj − 1)!
lim
z→zj


 doj−1

dzoj−1
(z − zj)

oj

+∞∑

n=−oj

an(zj)(z − zj)
n




=
1

(oj − 1)!

+∞∑

n=−oj

an(zj) lim
z→zj

[
doj−1

dzoj−1
(z − zj)

n+oj

]

=
1

(oj − 1)!

+∞∑

n=−oj

an(zj)(oj − 1)!δn,−1

= a−1(zj). (22)

■ Cauchy’s residue theorem

Cauchy’s residue theorem is a powerful method when it comes to calculating contour integrals of
complex meromorphic functions. For f(z) being a meromorphic function and C being a positively
oriented (i.e. counter-clockwise oriented) simple closed curve (non-self-intersected) that encloses
a number of N isolated poles of order oj and position zj , with j = 1, ..., N , Cauchy’s residue
theorem states that:

∮

C

f(z)dz = 2πi

N∑

j=1

Res(f, zj). (23)

Figure 4: Contour integration in the complex plane for the proof of the residue theorem

Let us prove the theorem now. We start by applying Cauchy’s integral theorem over the simple
closed contour C̃ ∪ S, where S = S−

1 ∪ S1 ∪ S+
1 ∪ · · · ∪ S−

N ∪ SN ∪ S+
N is the union of introduced

detours around the poles (see the figure above), that encloses the space D̃, which is holomorphic
since it excludes the set of poles that are inside C. Hence, we have that:

∮

C̃∪S

f(z)dz = 0. (24)
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But we also have that:

∮

C

f(z)dz = lim
δj→0,∀j

∫

C̃

f(z)dz

= lim
δj→0,∀j

∮

C̃∪S

f(z)dz − lim
δj→0,∀j

∫

S

f(z)dz

= − lim
δj→0,∀j

∫

S

f(z)dz

= −
N∑

j=1

lim
Rj→0

∫

Sj

f(z)dz

= 2πi

N∑

j=1

Res(f, zj), (25)

which proves the residue theorem. For the third equation above we made use of Eq. (24), whereas
for the fourth equation we made use of the property lim

δj→0

∫
S−
j ∪S+

j
f(z)dz = 0 and for the last

equation we made use of Eq. (20).

■ Cauchy’s principal value

Cauchy’s principal value is a method for assigning values to improper integrals that otherwise
would be undefined. For our purposes, Cauchy’s principal value is useful when we are called
to do integrations along contours that have a finite set of singularities at several points on top
of them. In order to perform such integrations properly, Cauchy’s principal value is the limit
of integration along the original contour, having removed infinitely small segments around the
singularities that interfere along the path of the original integration contour. Therefore we have
the following definition of Cauchy’s principal value of an integral:

P.V.

{∫

C

f(z)dz

}
= lim

ε→0+

∫

C−
ε

f(z)dz (26)

where C is the original contour and C−
ε is the original contour after we removed infinitely small

segments of length ε around each singularity that lies on C.

Let us consider, for example, a function f(x) that has a singularity at point b with a < b < c. In
such a case, Cauchy’s principal value of the integral from a to c takes the form:

P.V.

{∫ c

a

f(x)dx

}
= lim

ε→0+

[∫ b−ε/2

a

f(x)dx+

∫ b+ϵ/2

a

f(x)dx

]
. (27)
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Example of contour integration

Let us calculate the following integral
∫ ∞

−∞

eitx

x2 + 1
dx. (t is a real number) (28)

How can we calculate this? It may be possible to calculate by using a direct integration, but it
is non-trivial. Alternatively the use of the aforementioned mathematical theorems renders the
calculation much easier. To this end, let us transform the problem to complex plane, where f(z)
is a complex valued function with a complex variable z. Then consider an arbitrary contour that
includes the horizontal axis, corresponding to the real value of z.

Let us first suppose t > 0, for which we define the contour as the upper half circle. The reason
why we consider the upper half circle will be clear later. For this contour C, we apply Cauchy’s
residue theorem and then get

∮

C

eitz

z2 + 1
dz =

∮

C

eitz

(z + i)(z − i)
dz = 2πi

eitz

z + i

∣∣∣
z=i

= πe−t. (29)

This contour can be decomposed into two parts, the upper arc and the line along horizontal axis
as follows,

∮

C

eitz

z2 + 1
dz =

∫ a

−a

eitx

x2 + 1
dx+

∫

arc

f(z)dz (30)

So, the original integration can be evaluated, by the Cauchy’s principal value, as

P.V.

{∫ ∞

−∞

eitx

x2 + 1
dx

}
= lim

a→∞

∫ a

−a

eitx

x2 + 1
dx = πe−t − lim

a→∞

∫

arc

f(z)dz. (31)

Therefore, the later term above needs to be calculated. For this last term, we simply use the
direct integration method as follows,

lim
a→∞

∫

arc

f(z)dz = lim
a→∞

∫ π

0

eitae
iθ

a2e2iθ + 1
iaeiθdθ, (via the coord. transformation z = reiθ) (32)

= lim
a→∞

∫ π

0

aeita(cos θ+i sin θ)eiθ

a2e2iθ + 1
idθ (33)

= lim
a→∞

∫ π

0

ae−ta sin θ

a2e2iθ + 1︸ ︷︷ ︸
=X(θ), with lim

a→∞
|X(θ)|=0, for t > 0

eita cos θ+iθ
︸ ︷︷ ︸

bounded oscillating term

idθ (34)

= 0 (35)

As a result,
∫ ∞

−∞

eitx

x2 + 1
dx = πe−t (36)

When t < 0, we can apply the same method but with the lower half circle, and one gets
∫ ∞

−∞

eitx

x2 + 1
dx = πet. (37)

When t = 0, we can directly calculate the integral to get
∫ ∞

−∞

1

x2 + 1
dx = π. (38)

Combining the above results, we get
∫ ∞

−∞

eitx

x2 + 1
dx = πe−|t|. (39)
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3 Fourier transform of Heaviside function

Fourier Transformation of the Heaviside Function
Theoretical Optics SS2020

Karlsruhe Institute of Technology, Institute of Theoretical Solid State Physics

Here we show that the Fourier transformation of the Heaviside function Θ(t) defined as

Θ(t) =





1, if t > 0

1/2 if t = 0

0, if t < 0,

is given by

Θ(ω) =
i

2πω
+
δ(ω)

2
.

The Fourier transformation of the Heaviside function from the time to the frequency domain is
considerably cumbersome. Alternatively, we show the above relationship reversely, i.e., from the
frequency to the time domain, which we can write as follows,

Θ(t) =

∫ ∞

−∞
Θ(ω)e−iωtdω

=
1

2π

∫ +∞

−∞

i

ω
e−iωtdω +

1

2

∫ +∞

−∞
δ(ω)e−iωtdω,

=
i

2π
PV

∫ +∞

−∞

1

ω
e−iωtdω +

1

2
,

where PV indicates the Cauchy Principal Value of the integral, useful method for assigning the
value to an improper integral, defined as

PV

∫ +∞

−∞

1

ω
e−iωtdω = lim

ε→0+

[ ∫ −ε

−∞

1

ω
e−iωtdω +

∫ +∞

+ε

1

ω
e−iωtdω

]
≡ f(t). (1)

We will focus now on the integral in (1), which we will indicate with f(t), and then consider three
regimes for t as (i) t = 0, (ii) t < 0, and (iii) t > 0.

(i) When t = 0, it is written

f(0) = lim
ε→0+

[ ∫ −ε

−∞

1

ω
dω +

∫ +∞

+ε

1

ω
dω
]

= 0,

due to the fact that the function 1
ω is an odd function. So, Θ(t = 0) = 1

2 . Q.E.D.

(ii) When t < 0, the value of f(t) can be obtained by applying the Cauchy Residue Theorem.
To this extent, we can extend the integration domain to the complex plane, and notice that the
function in the integrand,

Φ(ω) =
e−iωt

ω
, (2)

1
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has only one pole at ω = 0. For 0 < ε < R, let Cε and CR be the semicircles in Fig. 1. Using the
residue theorem, the integral of (2) along the path indicated by Fig. 1 vanishes, since there are
no poles of the integrand inside the contour, i.e.,

∫ −ε

−R

1

ω
e−iωtdω +

∫

Cε

1

ω
e−iωtdω +

∫ R

+ε

1

ω
e−iωtdω +

∫

CR

1

ω
e−iωtdω = 0. (3)

ε e[ω]

Im
[ω

]

Cε

CR

-ε R-R

Figure 1: The contour for calculating f(t) for t < 0.

We can now notice that f(t) can be written as

f(t) = lim
ε→0+

R→+∞

[∫ −ε

−R

1

ω
e−iωtdω +

∫ +R

+ε

1

ω
e−iωtdω

]
,

and Eq. (3) allows to transform this expression into an integral along Cε and CR,

f(t) = lim
ε→0+

R→+∞

[
−
∫

Cε

1

ω
e−iωtdω −

∫

CR

1

ω
e−iωtdω

]
.

In order to calculate the integrals along the semicircles, we can write ω in polar coordinates
ω = ρeiφ, with φ ∈ [0, π], and ρ is the radius of the circle that we consider. The length of arc
becomes dω = iρeiφdφ. The integral along the path Cε reads

lim
ε→0+

[
−
∫

Cε

1

ω
e−iωtdω

]
= − lim

ε→0+

[∫ 0

π

iεeiφ

εeiφ
e−iε(cos(φ)+i sin(φ))tdφ

]
= iπ,

whereas the integral along CR reads

lim
R→∞

[∫

CR

1

ω
e−iωtdω

]
= lim
R→∞

[∫ π

0

iReiφ

Reiφ
e−iRt cos(φ)eRt sin(φ)dφ

]
= 0

since eR t sinφ → 0 as R→ +∞. As a result, we have f(t < 0) = iπ, so that Θ(t < 0) = 0.

Q.E.D.

(iii) When t > 0, the value of f(t) can be obtained by applying the same argument, but the
integration must be performed in the lower half-plane. This ensures the convergence of the
integral along the circle of radius R when R → ∞. The final result is f(t > 0) = −iπ, so that
Θ(t > 0) = 1. Q.E.D.

2
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3.1 Alternative approach

Using the conventions presented in the lecture notes:

1. F [f ] → Fourier transform (FT ) of the function f

2. d
dt

FT−−→ −iω

3. F [δ(t− t0)] =
1
2π

∫∞
−∞ δ(t− t0)e

iωtdt = 1
2π e

iωt0

we introduce at this point an alternative approach to derive the Fourier transform of the Heaviside
step function of the form:

Θ(t) =





1, if t > 0
1

2
, if t = 0

0, if t < 0

Figure 5: Unit Step Function

We see that integrating Θ(t) over the entire space does not give a finite integral value
∫∞
−∞ Θ(t)dt =

∞ and so the function intrinsically does not have a Fourier transformation. Alternatively we can

represent the Heaviside function Θ(t) = 1+sgn(t)
2 = 1

2 + sgn(t)
2 in terms of the signum (sgn)

function and then formulate the Fourier transform for the Heaviside function.

The signum function is given as :

sgn(t) =





1, if t > 0

0, if t = 0

−1, if t < 0

It is obvious from the nature of sgn(t) that the d
dt (

sgn(t)
2 ) = δ(t). So here we exploit this nature

of the derivative of signum function and apply Fourier transform to get

F
[
d

dt

(
sgn(t)

2

)]
= −iω

[
d

dt

(
sgn(t)

2

)]
= F [δ(t)]

⇒ F
[
sgn(t)

2

]
= − 1

iω
F [δ(t)]

F [sgn(t)] = − 1

iπω
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Figure 6: Signum Function

and substituting this result in Θ(t) gives

F [Θ(t)] = πF [δ(t)] +
1

2
F [sgn(t)] ,

Θ̄(ω) = πδ(ω) +
i

2πω
.

The more rigorous approach in achieving these results is to use a weak formulation approach. In
this approach we use a test function (preferably an exponential decay function) that convolutes
with the signum function and ensures finite value for the full space integration. Later imposing
appropriate limits requires the test function to vanish leaving behind the signum function. For
instance, the test function g(t) can be defined as

g(t) =





e−at, if t > 0

0, if t = 0

eat, if t < 0

with a being a real number.

Then, defining the convolution u(t) = sgn(t)g(t) leads to

u(t) =





e−at, if t > 0

0, if t = 0

−eat. if t < 0

Note that
lim
a→0

u(t) = sgn(t).

Applying the Fourier transform on u(t) yields

F [u(t)] =
1

2π

(∫ 0

−∞
u(t)eiωtdt+

∫ ∞

0

u(t)eiωtdt

)

=
1

2π

(
−
∫ 0

−∞
e(a+iω)tdt+

∫ ∞

0

e(−a+iω)tdt

)

=
1

2π

(
− 1

a+ iω
+

1

a− iω

)

=
2iω

2π (a2 + ω2)
.
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Limiting the value of a we have

lim
a→0

F [u(t)] = lim
a→0

iω

π (a2 + ω2)
=

−1

iπω
.

Substituting this result in Θ(t) gives us again

F [Θ(t)] = πF [δ(t)] +
1

2
F [sgn(t)] ,

Θ̄(ω) = πδ(ω) +
i

2πω
.
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