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1. Review of Electromagnetism 

1.1 Maxwell’s equations 

1.1.1 Maxwell’s equations in optics 
The starting point for all our future considerations are Maxwell’s equations in all 

their beauty. They provide the theoretical foundation for our lecture on theoretical 

optics. Details are discussed in previous courses such as “Fundamentals of Optics and 

Photonics” from Prof. Kalt and “Electromagnetics and Numerical Calculation of 

Fields” from Prof. Dössel. Maxwell’s equations in time and space domain read as 

The quantities whose functional dependencies are governed by those equations are 

the electric field !(#, %) given in units of V/m, the magnetic field '(#, %) given in 

units of Vs/m2 or Tesla. In addition we have the free charge density ρ!"#(#, %) in units 

of As/m3 and the macroscopic current density 	*$%&'(#, %)  in units of A/m2. 

Furthermore we have two auxiliary fields commonly known as the (electric) 

displacement field +(#, %) given in units of As/m2 and the magnetizing or the H-field 

,(#, %) given in units of A/m. To solve those equations, we have to define the 

functional dependency that links the electric and the magnetic field to their 

respective auxiliary fields. These functional dependencies are known as the 

constitutive relations:  

Here, the polarization -(#, %) is in units of As/m2 and the magnetization .(#, %) is in 

units of Vs/m2. They reflect the impact of matter. The two natural constants, which 

appear in these equations, are the electric constant (vacuum permittivity) that is 

#/0	!(#, %) = −
3'(#, %)

3% 456	+(#, %) = ρ!"#(#, %)

#/0	,(#, %) = *$%('(#, %) +
3+(#, %)

3% 456	'(#, %) = 0
	

+(#, %) = 9)	!(#, %) + 	-(#, %)

,(#, %) =
1
;)

[	'(#, %) − 	.(#, %)]	



	 3	

Please note, there are exceptions to these assumptions particularly in the 
contemporary field of research on metamaterials. There, it is principally possible 
that .(#, %) ≠ 0. Eventually, in the field of metamaterials more complicated 
functional dependencies can be perceived where the polarization depends not just 
on the electric field but in addition also on the magnetic field. The same holds for 
the magnetization that may also depend on the electric field. These constitutive 
relations are called bi-anisotropic.	

given by 9) =
*

+!,"
≈ 8.854	 ×	10-*.As/Vm and the magnetic constant (vacuum 

permeability) that is given by ;) = 4E	 ×	10-/Vs/Am. The polarization and the 

magnetization, in principle, are functions that depend on the electric and magnetic 

field. These dependencies are called constitutive relations. While neglecting effects 

due to electro-magnetic coupling that would suggest that an electric field can induce 

a magnetization and vice versa, we can write the constitutive relations generically as  

-(#, %) = F[!(#, %)] and .(#, %) = F['(#, %)]   

In optics, we usually deal with media that does not have a magnetic response. 

Therefore, we can safely assume that .(#, %) = 0 holds. 

Sources of electromagnetic radiation:  

• free charge density ρ!"#(#, %) 

• macroscopic current density: *$%('(#, %) = 	 *&012(#, %) +	 *&013(#, %) 

• conductive current density:  *&012(#, %) = F[!(#, %)]  

• convective current density: *&013(#, %) = ρ!"#(#, %)6  

In optics we do, generally, not have free charges:  

ρ!"#(#, %) = 0 → *&013(#, %) = 0	 →  

Maxwell’s equations in the field of optics in the time domain therefore read as 

jcond (r,t) ≡ j(r,t)

#/0	!(#, %) = −;)
3,(#, %)

3% 9)456	!(#, %) = −456	-(#, %)

#/0	,(#, %) = *(#, %) +
3-(#, %)
3% + 9)

3!(#, %)
3% 456	,(#, %) = 0
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1.1.2 Temporal dependencies of the fields 
A) The simplest situation concerns monochromatic, stationary fields. 

• They have a time harmonic dependency according to e-45!6®fixed phase 

relation, perfect coherence, infinite extent of the wave train 

!(#, %) = !I(#, J))e-45!6  

• Please note, this is an artificial assumption since an infinite wave will carry 

infinite energy that is not feasible, the assumption, however, works very well 

in most situations that are important to us. 

B) Polychromatic, non-stationary fields 

• They are described as a fully coherent finite or an infinite number of different 

frequencies contribute to form the signal. 

• To treat such systems, we perform a Fourier decomposition of an arbitrary 

field that allows a description in terms of infinite time harmonic wave trains. 

!(#, %) = ∫ !I(#, J)e-4567

-7
LJ  

!I(#, J) = *

.8
∫ !(#, %)e4567

-7
L%  

Please note, if you look into the literature you may find different definitions 

for the Fourier transform. This concerns the way the pre-factor occurs in the 

equations but also the sign for the exponential function is chosen differently 

(a different sign convention often coincides with the use of M as the imaginary 

unit). 

Finally, we deal in this part of the course with perfectly coherent light, i.e. it can be 

described in all its properties (amplitude, phase, frequency for each spectral 

component) precisely. Many sources of light do not obey these requirements but 

require a partially coherent or an incoherent treatment. This will be reflected in a 

devoted section in this course. 

1.1.3 Maxwell’s equations in frequency space 
The transition from time to frequency domain is done by Fourier transforming the 

equations and herewith all quantities of interest. The partial derivative that occur in 

Maxwell’s equations turn out to be algebraic expressions: 
*

.8
∫ L% 9

96
!(#, %)e4567

-7
= *

.8
∫ L% N 9

96
O!(#, %)e456P − !(#, %) 9

96
e456Q7

-7
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     = *

.8
	!(#, %)e456R

6:-7

6:7

− SJ *

.8
∫ L%!(#, %)e4567

-7
 

                                          =	−SJ!I(#, J) 

Therefore, in Maxwell’s equations the transition from time to frequency domain is 

made by the following replacement: 

9

96

;<
TU −SJ 

Please note the subtle but important difference in the notation. Quantities in 

frequency domain are highlighted here by a bar across the quantity. At some point 

of the course I will drop this to make the expressions more light. 

1.1.4 Wave equation 
A) Time domain 

#/0	#/0	!(#, %) = −;)#/0
9=(?,6)

96
= −;)

9

96
V*(#, %) + 9B(?,6)

96
+ 9)

9C(?,6)

96
W 

and:  

456[	9)!(#, %) + -(#, %)] = 0 

magnetic field: 

3,(#, %)
3% = −

X
;)

#/0	!(#, %)
 

B) Frequency domain 

and 

456[	9)!I(#, J) + -Y(#, J)] = 0 

magnetic field:  

,Y(#, J) = −
S

;)J
#/0	!I(#, J)

 

#/0	!I(#,J) = SJ;),Y(#,J) 9)456	!I(#,J) = −456	-Y(#,J)
#/0	,Y(#,J) = Z(̅#, J) − SJ-Y(#,J) − SJ9)!I(#,J) 456	,Y(#,J) = 0

	

#/0	#/0	!(#, %) +
1
\).
3.!(#, %)
3%. = −;)

3*(#, %)
3% − ;)

3.-(#, %)
3%. 	

#/0	#/0	!I(#,J) −
J.

\).
	!I(#,J) = SJ;)Z(̅#, J) + J.;)-Y(#,J)	
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Stationary fields in time domain correspond to the solution above and just multiplied 

with e-456 . For non-stationary fields and linear media it can be written as a 

superposition of individual solutions: !(#, %) = ∫ !I(#, J)e-4567

-7
LJ. 

1.2 Material properties 
Having exact information on the functional dependency of -(!) and *(!) is the 

solution of a complicated many body problem. The discussion is too complicated and 

often phenomenological models are fully sufficient. The functional dependency 

between cause (electric field) and action (induced polarization or current) is 

governed here by linear response theory. This assumption breaks down for larger 

field strength. Effects thereof are subject to the course on “Nonlinear optics” by Prof. 

Koos. The description of the functional dependency is possible in time or frequency 

domain. We distinguish the terms response function for the time domain and 

transfer function for the frequency domain. This terminology applies to many 

situations in this but also in other lectures. 

!(#, %) → ]^45_]	(response	function) → -(#, %) 

!I(#, J) → ]^45_]	(transfer	function) → -Y(#, J) 

1.2.1 Basic properties 
For a general biaxial anisotropic material the response and the transfer function read 
as 
k4(#, %) = 9)∑ ∫ m4D

(*)(#, % − %′)oD(#, %′)L%′
6

-7
E
D:*   m(#, p) - response function 

kI4(#, J) = 9) ∑ q4D
(*)(#, J)oID(#, J)E

D:*    q(*)(#, J)- susceptibility 

Response and transfer function are linked by a Fourier transform 

q(*)(#, J)
FG
↔m(#, p)

 For the simplest case of a linear, homogenous, isotropic and dispersive media this 

reads as 

m(%) = s q(*)(J)e-456
7

-7

LJ
 

In this section and the following we will strictly deal with these isotropic, dispersive 

materials. Anisotropic materials are subject to an individual section. 

To describe the properties of materials on phenomenological grounds, we can use 

physical insights and can develop basic models to express their properties. The 
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description of the material response is much more convenient in frequency domain 

since it is an algebraic expression. From previous lectures we know that there are 

two basic functional dependencies that can be used to describe phenomenologically 

the material response. 

We can distinguish between contributions from free electrons (that will lead to a 

Drude model) and contributions from bound electrons, lattice vibrations or similar 

effect (that will lead to a Lorentz model). These models, which we will shortly 

discuss in the following, lead to a permittivity that is composed of one Drude term 

and a countable finite number of Lorentz terms. Each of these terms is characterized 

by a few free parameters only that have to be found suitably for each material. 

1.2.2 Drude model 
The Drude model is canonical to describe the contributions of free electrons. Such 

assumption is fully justified to express the optical properties of metals and excited 

semi-conductors. The free electrons eventually lead to the model of a free electron 

gas, which we develop in the following. The main feature of the Drude model is the 

acceleration of the electrons by the electric field that causes a current. Contrary to 

the Lorentz model, there is no restoring force and the electrons are simply 

accelerated. Interaction of the electrons with the ionic background (that assures 

charge neutrality) and the interaction between electrons suggest that the electrons 

are not accelerated arbitrarily but some damping will occur. This damping is taken 

into account as well on phenomenological grounds.  

To describe the equation of motion of the charges, we use the following Newtonian 

equation: 

3.

3%. t
(#, %) + u

3
3% t

(#, %) = −
v
w!(#, %) 

Please note, it will be important further on, this corresponds to a driven harmonic 

oscillator without restoring force. w is here the mass of the electrons that is in a 

semiconductor an effective mass. u is the phenomenologically introduced damping 

and t(#, %) describes the displacement of the electron due to an electric field !(#, %). 

The induced current density for an electron density of x	is 

*(#, %) = −xv
3
3% t

(#, %) 
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Z(̅#, J) =
9)JH.

u − SJ!I(#,J) = σ(#,J)!I(#,J)	

which leads to an expression as  

3
3% *

(#, %) + u*(#, %) =
v.x
w !(#, %) = 9)F!(#, %) = 9)JH.!(#, %) 

where the plasma frequency has been introduced as 

JH. = F =
1
9)
v.x
w  

The solution of the above differential equation in time domain is best expressed in 

frequency domain by Fourier transforming the equation: 

−SJZ(̅#, J) + uZ(̅#, J) = 9)JH.!I(#, J) 

This equation can be recast to express the induced current density depending on the 

electric field, which is just one form of writing the constitutive relation. 

 

 

 

Here, the complex conductivity had been introduced that collects all the pre-factors.  

1.2.4 Lorentz model 
The Lorentz model expresses the contribution of bound electrons and lattice 

vibrations. Here, the starting point is again a physically motivated expression for the 

displacement of a specific kind of particle but contrary to the free electrons there 

will be now a restoring force. This leads to a driven, damped harmonic oscillator in 

the phenomenological description according to: 

3.

3%. t
(#, %) + u

3
3% t

(#, %) + J)
.t(#, %) =

z
w!(#, %) 

Here, J)  is the resonance frequency of the harmonic oscillator and we have 

generalized the charge to z. The harmonic oscillator is damped as well by a factor u. 

t(#, %) is best understood as the displacement from a fix point. The simplest physical 

picture you can and should potentially use is that of a negative charge displaced 

from its ionic core. Displacing the negative charge from the positively charged ionic 

core induces an electric dipole moment 

{(#, %) = zt(#, %) 

Making the transition to a dipole density or electrical polarization, we reach an 

expression that links the polarization to the displacement via 
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-(#, %) = x{(#, %) = xzt(#, %) 

Plugging this expression into the equation of motion we obtain a differential 

equation for the polarization that reads as 

3.

3%. -
(#, %) + u

3
3% -

(#, %) + J)
.-(#, %) =

z.x
w !(#, %) = 9)F!(#, %) 

where the oscillator strength has been introduced according to 

F =
1
9)
z.x
w  

Solving the equation in frequency space 

−J.-Y(#, J) − SuJ-Y(#, J) + J)
.-Y(#, J) = 9)F!I(#, J) 

leads to the final expression of 

 

 

 

where the susceptibility had been introduced. With these expressions, all materials 

can be described in terms of uncoupled, driven, damped, harmonic oscillators + one 

Drude term.  

1.2.4 Complex dielectric function 
Constitutive relations  Z(̅#, J)and -Y(#, J)	are plugged into wave equations 

#/0	#/0	!I(#, J) −
J.

\).
	!I(#, J) = J.;)-Y(#, J) + SJ;)Z(̅#, J)

 
                                         = [;)9)J.q(J) + SJ;)σ(#, J)]!I(#, J) 

#/0	#/0	!I(#, J) =
J.

\).
	 |X + q(J) +

S
J9)

σ(#, J)} !I(#, J) 

                                                      = 5"

,!
" 9(J)!I(#, J) 

leading to the generalized complex dielectric function 

9(J) = X + q(J) + 4

5I!
σ(#, J) = 9′(J) + S9′′(J)

 

Please note, this is what is usually called the relative permittivity of the medium. The 
entire permittivity requires a multiplication with the vacuum permittivity.  

-Y(#,J) =
9)F

(J). −J.) − SuJ !I(#,J) = 9)q(J)!I(#,J)	

9(J) = 1 +~
FD

�J)D
. −J.Ä − SuDJD

+
JH.

−J. − SuJ	
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1.2.5 Kramers-Kronig dispersion relation 
Statement: real (dispersion) and imaginary (absorption) part of the transfer function 

are linked by an integral transformation! 

Here: dielectric susceptibility or dielectric function 

Applies when the response function is:  

• time invariant,  

• real valued,  

• when causality applies.  

We will explicitly take advantage of each of these properties in the derivation of the 

Kramers-Kronig dispersion relation.  

Causality is a fundamental property and suggests that the polarization shall not 

depend on some future electric field 

-(Å, %) = 9)s m(% − %′)!(Å, %′)L%′
6

-7

		↔ 						-(Å, %) = 9)s m(p)!(Å, % − p)Lp
7

)

 

The response function is real valued as a direct consequence from Maxwell’s 

equations that are equally real valued 

m(p) = s q(J)e-45J
7

-7

LJ = s q∗(J)e45J
7

-7

LJ	 → 		q(J) = q∗(−J) 

Causality of the response function requires to write it as  

m(p) = Ç(p)É(p)			with			Ç(p) = Ü
1 for	p > 0
1
2â for	p = 0
0 for	p < 0

  Heaviside distribution 

Now we have: 

q(J) =
1
2Es m(p)e45J

7

-7

Lp =
1
2Es Ç(p)É(p)e45J

7

-7

Lp = s Ç̅(J − JY)ÉI(JY)
7

-7

LJY 

since a product in time space is a convolution in frequency space (and vice versa). 

What is the Fourier transform of the Heaviside distribution? Details on the 

mathematics of the Fourier transform of the Heaviside distribution will be given in 

the tutorial but the final result will read as 

2EÇ̅(J) = s 	Ç(%)v456L%
7

-7

= lim
I→)

S
J + S9 = k

S
J + Eç(J) 

The latter two terms are only defined in terms of integrals. Eventually, the Fourier 

transform consists of two parts that are defined: 
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Delta distribution:  

s δ(J − J))F(J)Lω =
7

-7

F(J)) 

Cauchy principal value: 

k s Lω
7

-7

S
J F(J) = lim

M→)
ê s Lω

S
J F(J)

-M

-7

+ s Lω
S
J F(J)

7

M

ë 

Using these two definitions we can explicitly calculate the susceptibility by 

performing the convolution for the two individual terms with the function  

q(J) =
1
2E ks LJY	

S	ÉI(JY)
J − JY

7

-7

+
ÉI(J)
2 							(∗) 

Now we exploit the fact that the function É(p) can be chosen freely at negative 

times without affecting the susceptibility. Therefore we chose, for example, the 

function to be either an even or an odd function. 

(1) É(−p) = É(p)  even function 

(2) É(−p) = −É(p) odd function. 

Now let us discuss the consequences on its Fourier transform! 

(1) Considering the function É(p) to be an even function 

ÉI(J) =
1
2Es Lp	É(p)v45J

7

-7

=
1
2Es Lp	É(p)v-45J

7

-7

= ÉI∗(J) 

Then ÉI(J) is real valued as well. Therefore, we can conclude that the complex 

conjugate from the susceptibility as discussed above reads as 

q∗(J) = −
1
2E ks LJY	

S	ÉI(JY)
J − JY

7

-7

+
ÉI(J)
2  

Based on these two expressions we can compute now the real and the imaginary 

part of the susceptibility: 

 q(J) + q∗(J) = *

.8
k ∫ LJY	 4	OP(5Q)

5-5Q

7

-7
+ OP(5)

.
− *

.8
k ∫ LJY 	 4	OP(5Q)

5-5Q

7

-7
+ OP(5)

.
= ÉI(J)   (a) 

q(J) − q∗(J) = ⋯ = *

8
k ∫ LJY	 4	OP(5Q )

5-5Q

7

-7
                                                                           (b) 

Now by inserting (a) into the right hand side of (b) we eventually obtain the first 

Kramers-Kronig relation: 

ℑ[q(J)] = −
1
E ks LJY	

ℜ[q(JY)]
JY − J

7

-7

 



	 12	

Please note, in the last step the arguments of the denominator where interchanged 

to adhere to a usual notation. The equations tells us that once we know the real part 

of the susceptibility, that tells us something on the dispersion, we can compute the 

imaginary part of the susceptibility, that tells us something on the absorption.  

However, it has to be stressed that for an exact analysis the dispersion needs to be 

known across the entire frequency domain, which is technically difficult, if not to say 

impossible to obtain. However, the integrand sufficiently decays such that the 

expression can be often used in an approximate sense.  

(2) In a second step we consider the function É(p) to be an odd function and discuss 

the consequences on how the function ÉI(J) and its conjugate are interlinked. 

ÉI(J) =
1
2Es Lp	É(p)v45J

7

-7

= −
1
2Es Lp	É(p)v-45J

7

-7

= −ÉI∗(J) 

Therefore, we can conclude that the complex conjugate from the susceptibility as 

discussed above reads as 

q∗(J) =
1
2E ks LJY	

S	ÉI(JY)
J − JY

7

-7

−
ÉI(J)
2  

We perform the same procedure as before and compute the real and the imaginary 

part of the susceptibility: 

 q(J) − q∗(J) = *

.8
k ∫ LJY	 4	OP(5Q)

5-5Q

7

-7
+ OP(5)

.
− *

.8
k ∫ LJY 	 4	OP(5Q)

5-5Q

7

-7
+ OP(5)

.
= ÉI(J)   (a) 

q(J) + q∗(J) = ⋯ = *

8
k ∫ LJY	 4	OP(5Q )

5-5Q

7

-7
                                                                           (b) 

By inserting (a) into the lhs of (b) we obtain the second Kramers-Kronig relation: 

By using the following previously discussed functional dependencies  

q(J) = q∗(−J)      ® q′(J) = q′(−J)      and   qRR(J) = −q′′(−J) 

and 

q(J) = 9(J) − 1 = [9R(J) − 1] + S9′′(J) 

it follows for the two Kramers-Kronig relations for the permittivity that 

q′(J) =
1
E ks LJY	

q′′(JY)
JY − J

7

-7

=
1
E ks LJY	

q′′(JY)
JY − J

)

-7

+
1
E ks LJY	

q′′(JY)
JY − J

7

)

 

ℜ[q(J)] =
1
E ks LJY 	

ℑ[q(JY)]
JY − J

7

-7
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=
1
E ks LJY	

q′′(−JY)
−JY − J

7

)

+
1
E ks LJY 	

q′′(JY)
JY − J

7

)

 

= −
1
E ks LJY 	

q′′(JY)(JY − J)
(−JY − J)(JY − J)

7

)

+
1
E ks LJY 	

q′′(JY)(−JY − J)
(JY − J)(−JY − J)

7

)

 

= −
1
E ks LJY 	

q′′(JY)(JY − J)
J. − JY.

7

)

+
1
E ks LJY	

q′′(JY)(−JY − J)
J. − JY.

7

)

 

=
1
E ks LJY	

Jq′′(JY) − JYq′′(JY) − Jq′′(JY) − JYq′′(JY)
J. − JY.

7

)

 

=
2
E ks LJY	

JYq′′(JY)
JY. − J.

7

)

 

In a last step we have only plugged in the real and imaginary part of the 

susceptibility in terms of the permittivity. The second equation can be derived in an 

analogous manner. 

An example for the immediate application of the Kramers-Kronig relation is that of 

an arbitrary narrow absorption line at a discrete frequency. This absorption line can 

be written using a delta-distribution according to 9RR(J)~ç(J − J)). It follows from 

the equation above that only a contribution to the integral is made at the frequency 

JY = J) . The real part can be evaluated according to 9R(J) − 1~ 5!

5!
"-5"

. This 

corresponds to a Lorentzian line with an arbitrary narrow Absorption line.  

More details and a good source for a reference is the following book: V. Lucarini J.J. 

Saarinen, K.-E. Peiponen E.M. Vartiainen 'Kramers–Kronig Relations in Optical 

Materials Research' Springer 2004. 

	  

9R(J) − 1 =
2
E ks LJY 	

JY9RR(JY)
JY. −J.

7

)

 

9RR(J) = −
2
EJks LJY	

[9R(JY) − 1]
JY. − J.

7

)

 

 



	 14	

1.3 Maxwell’s stress tensor 
From Maxwell’s equations it follows straight that electric charge and electric current 

density are related by a continuity equation.  This reads as 

3ó(#, %)
3% + ∇ ∙ *(#, %) = 0 

It suggests that the rate of decrease of the charge density ó(#, %) is equal to the 

divergence of the current density. Charge is a conserved quantity that cannot vanish 

at one point and instantly appear somewhere else in space. Instead, charges have to 

move continuously along a path in space where they can create a current. We can 

therefore also think of the current density as being given by  *(#, %) = ó(#, %)6(#, %). 

To define basic terminology, we can use an analogy to mechanics. 

The same type of continuity holds for momentum that can be written as  
9S(?,6)

96
+ ∇ ∙ öT(#, %) = 0  

where {(#, %) is the momentum density and öT(#, %) is the momentum density 

tensor. It can be understood as the outer product of the momentum density 

and velocity, i.e. öT(#, %) = {(#, %)6(#, %). The rate of change of momentum 

per volume is the force per volume 

õ(#, %) = 9S(?,6)

96
= −∇ ∙ öT(#, %)  

The total force acting on the body needs to be integrated across the volume 

such that 

ú(ù) = ∫ õ(#, %)	Lû = −∫∇ ∙ öT(#, %)	Lû = −∫ öT(#, %) ∙ Lü  

The last expression in the integral, i.e. −öT(#, %) ∙ Lü is the force per area 

which defines the stress †(#, %) tensor as †(#, %) = −öT(#, %). 

 

Now we proceed with the electromagnetic problem and discuss the force per 

volume acting on free charges in the presence of electromagnetic fields. This will 

lead to the derivation of the Maxwell Stress Tensor (or actually the Minkowski Stress 

Tensor since Maxwell only considered free space). 

The force acting on a charge density is given by the Lorentz force that reads as 

õ(#, %) = ó(#, %)!(#, %) + ó(#, %)6(#, %) × '(#, %) = ó(#, %)!(#, %) + *(#, %) × '(#, %) 

Now using Maxwell’s equations  

∇ ∙ +(#, %) = ρ(#, %) 
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and  

∇ × ,(#, %) −
3+(#, %)

3% = *(#, %) 

we obtain 

õ(#, %) = !(#, %)[∇ ∙ +(#, %)] − '(#, %) × ∇ × ,(#, %) −
3+(#, %)

3% × '(#, %) 

By keeping in mind that 

3
3%
[+(#, %) × '(#, %)] =

3+(#, %)
3% × '(#, %) + +(#, %) ×

3'(#, %)
3%  

we obtain 

!(#, %) = ((#, %)[∇ ∙ ,(#, %)] − /(#, %) × ∇ × 1(#, %) + ,(#, %) × 3/(#, %)3% − 3
3% [,(#, %) × /(#, %)] 

Substituting for the second last time derivative ∇ × 	!(#, %) = − UV(?,W)
UW

 gives 

!(#, %) = ((#, %)[∇ ∙ ,(#, %)] − /(#, %) × ∇ × 1(#, %) − ,(#, %) ×	∇ × 	((#, %)

− 3
3% [,(#, %) × /(#, %)] 

By taking advantage that ∇ ∙ 	'(#, %) = 0, we can insert a suitable zero into the 

expression to obtain a highly symmetric expression that reads as  
X(?, W) = C(?, W)[∇ ∙ ](?, W)] + =(?, W)[∇ ∙ V(?, W)] − V(?, W) × ∇ × =(?, W) − ](?, W) × 	∇ × 	C(?, W)

−
U

UW
[](?, W) × V(?, W)] 

This expression now needs to be simplified.  Please note that for the tensor that mediates 

the response between electric field and displacement it can be shown (in the tutorial) that 

!(#, %)[∇ ∙ *(#, %)] − *(#, %) ×	∇ × 	!(#, %) =
#

#$!
01%2& −

'

(
3%&1)2)4  

               = ∇ ∙ 0!(#, %)*(#, %) −
'

(
5[!(#, %) ∙ *(#, %)]4 

Please note that in this expression the nabla operator ∇ operates on %(&, () and ) is the 

idendity matrix. The same holds for the expression that contains the magnetic fields. 

*(&, ()[∇ ∙ -(&, ()] − -(&, () ×	∇ × 	*(&, () = ∇ ∙ 2*(&, ()-(&, () −
1

2
)[*(&, () ∙ -(&, ()]5 

This simplifies the expression for the force to be 

6(&, () = ∇ ∙ 27(&, ()%(&, () + *(&, ()-(&, () −
1

2
)[7(&, () ∙ %(&, () + *(&, () ∙ -(&, ()]5

−
9

9(
[%(&, () × -(&, ()] 

Now, by being reminded that 6(&, () = #$(%,')
#' , where :(&, () is here the momentum density 

of the free charges, we can write the expression above as 
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!"($, &)
!& + !

!& [*($, &) × ,($, &)]

= −∇ ∙ 2−34($, &)*($, &) + 5($, &),($, &) − 12 8[4($, &) ∙ *($, &) + 5($, &) ∙ ,($, &)]9: 

Now, there is a clear physical interpretation of the individual terms. The first term on the 

left-hand-side is the rate of change of momentum of the free charges. The second term on 

the left-hand-side is the rate of change of momentum density of the electromagnetic field. 

The momentum of the electro-magnetic field here is introduced as %(&, () × -(&, (). The 

total momentum of a propagating electromagnetic wave therefore increases upon entering 

a dielectric medium proportional to the refractive index < of the medium. Please note, this is 

discussed in a simplified situation where we neglect dispersion and consider only an 

isotropic non-absorbing medium. This definition for the momentum of the electro-magnetic 

field is not obvious and was questioned in the course of time. Apparently, it drew criticism 

since it seems to be incompatible with the conservation of angular momentum. Therefore, 

other expressions for the electromagnetic wave momentum where suggested, e.g. by 

Abraham it was suggested that the momentum should be defined as ()! =7(&, () × *(&, ()>. 

The momentum of an electromagnetic wave entering a dielectric medium then falls 

proportional to the refractive index <. Under the Abraham tensor, a photon therefore 

carries less momentum within a medium than in the Minkowski case. This led to quite a 

controversial discussion, which is, interesting enough, not yet settled. There are regular 

suggestions for experiments that shall be able to decide what is the change of the 

momentum in a medium, but so far there is no conclusion.  No observable could be thus far 

perceived for which different predictions exist in the context of the Minkowski or the 

Abraham picture. For more details you may take a look into review article “Colloquium: 

Momentum of an electromagnetic wave in dielectric media” from Pfeifer et al. in Rev. Mod. 

Phys. Vol 79, 1197 (2007), 

The right-hand-side of the equation above represents the negative of the divergence of the 

momentum current density. The momentum current density tensor therefore is 

?(&, () = −@7(&, ()%(&, () + *(&, ()-(&, () −
1

2
)[7(&, () ∙ %(&, () + *(&, () ∙ -(&, ()]A 

and the Minkowksi stress tensor B is defined as the negative of this 

The force per area is then defined as  

†(#, %) ∙ Lü 

†(#, %) = 7(&, ()%(&, ()+ *(&, ()-(&, ()−
1

2
)[7(&, () ∙ %(&, () + *(&, () ∙ -(&, ()]	
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In the case of vacuum this reduces to  

B(&, () = C*7(&, ()7(&, () +
1

D*
-(&, ()-(&, () −

1

2
) EC*7(&, () ∙ 7(&, () +

1

D*
-(&, () ∙ -(&, ()F 

The components G+,  of the stress tensor have the following meaning: It is the force per unit 

area in direction HI- acting on the surface being normal in direction HI.. Thus, 6** are pressures 

(forces normal to surfaces), whereas 6*+ with J ≠ L are shears (forces parallel to surfaces). 

Note that only the total fields enter in the equations, which contain all information about 

the charge distributions, on which the forces act. 

A more convenient analysis is usually done in frequency domain. Considering the time 

average of the electromagnetic force and calculating the total force by integration across the 

entire surface of a particle, we obtain: 

〈NO(P)〉 = 〈R=†S(#,J) ∙ °>d£〉

= T U
909(J)
2 ℜ[(7O(&,J) ∙ °)7O∗(&,J)] −

909(J)
4 =7O(&,J) ∙ 7O∗(&,J)>°

0

+
;0;(J)

2 ℜ[(*S(&,J) ∙ °)*S ∗(&,J)] −
;0;(J)

4 =*(&,J) ∙ *S ∗(&,J)>°WXY′ 

where XY′ is the length of a line segment of the surface. 

The net radiation torque on the particle is calculated by  

〈[(P)〉 = 〈R&	 ×	=†S(#,J) ∙ °>d£〉. 

1.4 Poynting vector and energy balance  

1.4.1 Time averaged Poynting vector 
One of the last things we wish to discuss here on the base of Maxwell’s equations 

concerns the Poynting vector and its conservation/dissipation. Generally, the flow of 

energy is expressed using the Poynting vector §(#, %). Particularly, in the context of 

discussing the measurement of an optical signal, the energy flux through a plane in 

normal direction §(#, %) ∙ °  is important. °  is here a vector pointing in normal 

direction to the interface. This corresponds to the situation of a detector. The 

instantaneous energy flux is expressed as 

§(#, %) = !'(#, %) × ,'(#, %) 

Please note, contrary to many other situations where the analysis with the electric 

and magnetic field as a complex quantity is fully sufficient, here we explicitly have to 
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consider the real part of the fields only. They are abbreviated with the r as subscript. 

In the measurement process we have to distinguish different time scales: 

• the fast oscillation period of the electromagnetic field → •) =
.8

5!
< 10-*c¶ 

• the duration of a possibly slowly varying field, i.e. the temporal duration of a 

pulse (see next section) → •d where is usually holds •d ≫ •) 

• and the duration of the measurement → •e where is usually holds •e ≫ •) 

but •e ≥ •H. 

Generally, a detector cannot measure the fast oscillation but it only measures the 

temporal average. Under the assumption that the field can be written as a product 

of a slowly varying envelope !©(#, %) and a fast oscillation v-45!6 

!'(#, %) =
1
2 O!

©(#, %)v-45!6 + \. \. P 

we can express the instantaneous Poynting vector as 

§(#, %) = !'(#, %) × ,'(#, %)  

            = *

c
O!©(#, %) × ,™ ∗(#, %) + !©∗(#, %) × ,™(#, %)P  

                + *

c
O!©(#, %) × ,™(#, %)v-.45!6 + !©∗(#, %) × ,™ ∗(#, %)v.45!6P  

           = *

.
ℜO!©(#, %) × ,™ ∗(#, %)P + *

.
ℜO!©(#, %) × ,™(#, %)P cos 2J)%  

              + *

.
ℑO!© ∗(#, %) × ,™ ∗(#, %)P sin 2J)%  

The actual measured signal corresponds to the time average of §(#, %) 

〈§(#, %)〉 =
1

2•e
s §(#, %′)L%′
6fG,

6-G,

 

This integration causes a vanishing of the fastly oscillating terms and the only 

remaining expression corresponsd to 

〈§(#, %)〉 =
1
2

1
2•e

s ℜO!©(#, %′) × ,™ ∗(#, %′)PL%′
6fG,

6-G,

 

For the special case of a stationary, i.e. monochromatic field where the electric field 

can be expressed as !©(#, %′) = !I(#, J)) and the magnetic field can be expressed as 

,™(#, %′) = ,Y(#, J)), the time averaged Poynting vector reads as 

〈§(#, %)〉 =
1
2ℜ

[!I(#, J)) × ,Y ∗(#, J))] 

This corresponds to the intensity ≠ = 〈§(#, %)〉. 
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1.4.2 Energy balance 
What we are looking for at the moment is an expression for the dissipation (consider 

here only passive optical media) of electromagnetic energy density as a function of 

the absorption (imaginary part of the permittivity) and the magnitude of the field. 

For practical purposes this is important, e.g. if you wish to calculate the absorption in 

a solar cell. Then, you need to know how much energy is dissipated, i.e. absorbed, in 

the spatial domain occupied by the active material of a solar cell, e.g. the silicon 

material. This Poynting’s theorem as it is also called, is usually derived in lectures on 

electrodynamics but it is contained here both because of its importance and because 

it’s a nice demonstration on how to derive an expression for an observable quantity 

directly from Maxwell’s equations. Starting from Maxwell’s equation in space and 

time domain and multiplying to the curl equation for the electric field the magnetic 

field and to the curl equation for the magnetic field the electric field provides 

  ,(#, %) ∙ #/0	!(#, %) + ;),(#, %) ∙
9

96
,(#, %) = 0  

−ε)!(#, %) ∙
9

96
!(#, %) + !(#, %) ∙ #/0	,(#, %) = !(#, %) Ø*(#, %) + 9

96
-(#, %)∞  

Since we can write	\]^=7(&, () × *(&, ()> = *(&, () ∙ &_`	7(&, () − 7(&, () ∙ &_`	*(&, () we 

can subtract both above expressions to obtain (dropping from now on the space and 

time arguments) 

1
2 ε)

3
3% !

. +
1
2;)

3
3% ,

. + \]^(7 × *) = −!Ø* +
3
3% -∞ 

Eventually, we wish to emphasize that this expression holds for the real valued 

fields, so it needs to be written as 

1
2 ε)

3
3% 71

2 +
1
2;)

3
3%*1

2 + \]^(71 × *1) = −71 Øa1 +
3
3% b1∞ 

This expression is a balance equation. The temporal change of the electrical energy 

density *
.
ε)!gh , the magnetic energy density *

.
;),g

h  and the source/sink of the 

Poynting vector are linked to the source terms on the right hand side of this equation. 

For a stationary field !'(#, %) =
*

.
O!I(#, J))v-45!6 + \. \. P the time average of the 

left hand side of the equation gives 

〈
1

2
ε*
9

9(
712 +

1

2
D*

9

9(
*12 + \]^(71 × *1)〉 =

1

2
\]^(ℜ[7O(&, d*) × *S ∗(&, d*)])

= \]^	〈e(&, ()〉 
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This corresponds to the source/sink of the time-averaged energy density. For the 

right hand side of the equation we obtain 

− 〈fa1 +
U

UW
b1g 71〉  

= − *

c
〈O±(J))!Iv-45!6 − SJ)ε0h(J))!Iv-45!6 + \. \. PO!I(#, J))v-45!6 + \. \. P〉  

= − *

c
〈V−SJ)ε0 ≤h(J)) + S i(5!)

5!ε0
≥ !Iv-45!6 + \. \. W O!I(#, J))v-45!6 + \. \. P〉  

= *

c
SJ)ε0[C(J)) − 1]!I!I∗ + \. \. = *

c
SJ)ε0[C′(J)) − 1 + SC′′(J))]!I!I∗ + \. \.  

= − *

.
J)ε0C′′(J))!I!I∗  

Taking both sides of the equation together we obtain 

\]^	〈e(&, ()〉 = −
1
2J0ε*C′′(J0)!S!S

∗ 

There are sinks in the energy flow whenever the imaginary part of the permittivity is 

nonzero (with the sign convention chosen here the imaginary part is always 

positive). This occurs to a notable extent whenever there is a resonance in the 

permittivity. Then, the resonances are intimately linked to absorption. 

For non-stationary fields, i.e. the slowly varying fields as assumed before !'(#, %) =
*

.
O!©(#, %)v-45!6 + \. \. P, the material dispersion has to be taken explicitly into 

account and the Poynting theorem reads as (without derivation) 

1

4

9

9%
:ε-

9[<-=′(#, <-)]

9<-
?!@(#, %)?

(
+ µ-?CD(#, %)?

(
E + FGH	〈J(#, %)〉 = −

1

2
<-ε-=′′(<-)?!@(#, %)?

( 

1.5 Wave propagation (here for pulses) 

1.5.1 Fourier expansion of an arbitrary field 
Starting point shall be the wave equation in time domain.  

#/0	#/0	!(#, %) = −;)#/0
3,(#, %)

3% = −;)
3
3% ¥*

(#, %) +
3-(#, %)

3% + 9)
3!(#, %)
3% µ 

Using a harmonic Ansatz function in both time and spatial, i.e. looking for solutions 

where all fields oscillate according to v4(j∙?-56), assuming a homogenous, isotropic, 

local, dispersive material that can be described with the generalized dielectric 

function 9(J) as introduced before, and taking advantage that divergence vanishes 

such that #/0	#/0	ü = ∂#∑4	(456	ü) − ∆ü we obtain the following set of algebraic 

equations using the Fourier transform pairs: 
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3
3%

;<
TU −SJ 

∆!I(#, J) +
J.

\).
9(J)!I(#, J) = 0 

Further Fourier transformation (corresponding to an expansion into plane waves) 

with respect to the spatial coordinates provides 

3
3π

;<
TU S∫M  

!I(ª, J) º−ªh +
J.

\).
9(J)Ω = 0 

This leads to a very important equation, known as the dispersion relation for the 

eigensolutions propagating in the medium mentioned above. This dispersion relation 

reads as 

A large class of problems in the context of theoretical optics can be described as 

finding eigensolutions (normalmodes) and the associated eigenvalues (dispersion 

relations) for more complicated distributions of materials in space. We solve this 

problem in a later section in the context of anisotropic materials, but similar 

extensions can be made towards materials with a magnetic dispersions (as relevant 

in the context of metamaterials) or for material distributions in space that are 

inhomogeneous. This holds for example for photonic crystals or waveguides. 

Whereas for photonic crystals the eigensolutions are Bloch periodic modes, for 

waveguides the eigensolutions are guided modes. So the procedure above looks 

simple but is quite canonical. Appreciating its implications puts you in the position to 

discuss optics and photonics in many situations. 

The propagation of a pulsed beam with a finite transverse width and of finite 

duration can be analytically described using the inverse Fourier transform of its 

spectrum. 

!(#, %) = s !I(ª, J)v4(j(k)∙?-56)LE∫LJ
7

-7

 

ª. =
J.

\).
9(J)	
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Here, a pulsed beam is a continuous superposition of stationary plane waves (normal 

modes) with different frequencies and different propagation directions. 

1.5.2 Taylor expansion of the dispersion relation 
Restricting for the moment the considerations to a problem where the field 

propagates only in one-dimension and considering a fixed polarization, a scalar 

expression can be used. The scalar quantity æ(ø, %) represents here the respective 

coefficient of the electric field. 

æ(ø, %) = s æI(∫, J)v4(l(5)m-56)L∫LJ
7

-7

 

This is an exact and rigorous solution. However, in many situations such integral 

solution is not necessary since the Fourier spectrum will be narrow.  Look into a 

typical application (spectroscopy, nonlinear optics, telecommunication, material 

processing) for which we need to consider propagation of pulses. In this situation, 

we have typically pulse envelopes of 10�13 s (100 fs) ≤ T0 ≤ 10�10 s (100 ps). Let us 

compute the spectrum of the (Gaussian) pulse: 

F(%) = v-45!6v
-
6"

G!
"  

¡(J)~v
-
(5-5!)

"

c/G!
"  

Therefore, the spectral width is in the order of Jo. = 4/•).. 

For the example above this gives 4�1010Hz ≤	Jo ≤4�1013Hz. This is small when 

compared to a (visible) center frequency J) that is in the order of 4 �1015 Hz. In this 

situation, it can be helpful to replace the complicated dispersion relation by a Taylor 

expansion at J = J) . In general, a parabolic (or cubic) approximation will be 

sufficient. 

The individual terms are commonly used in literature and have the following physical 

meaning: 

(A) ∫(J)) = ∫) →
*

p./
= l!

5!
= q(5!)

,!
  is called the phase velocity and describes 

the propagation speed of wave fronts in space with a constant phase  

∫(J) ≈ ∫(J)) +
3∫
3J√5!

(J − J)) +
1
2
3.∫
3J.

ƒ
5!

(J − J)). +⋯ 
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(B) *

p0
= 9l

95
R
5!

is called the group velocity. It describes the velocity of the center 

of the pulse. With the functional dependency of  

∫(J) =
J
\)
≈(J) →

1
∆r

=
1
\)
¥≈(J)) + J)

3≈
3J√5!

µ 

The group velocity therefore is defined as  

∆r =
\)

¥≈(J)) + J)
3≈
3J√5!

µ
=

\)
≈r(J))

= ∆Hs
≈(J))
≈r(J))

 

The group index is defined here as  

≈r(J)) = ≈(J)) + J)
9q

95
R
5!

  

One usually distinguishes between: 

normal dispersion:  	9q
95
R
5!

> 0	 → ≈r > ≈ → ∆r < ∆Hs  

anomalous dispersion: 	9q
95
R
5!

< 0	 → ≈r < ≈ → ∆r > ∆Hs  

(C) «5 = 9"l

95"
R
5!

is called the group velocity dispersion (GVD or simply 

dispersion). 

 Alternatively it can be expressed (especially in the context of 

telecommunications) as  

«t =
3
3» …

1
∆r
 = −

2E
». \)«5 

«5 =
3
3J…

1
∆r
 = −

1
∆r.

3∆r
3J  

The group velocity dispersion can be: 

«5 > 0 →
3∆r
3J < 0 

«5 < 0 →
3∆r
3J > 0 

The entire complicated system is reduced to three parameters only that characterize 

the material and/or the geometry along which light propagates. The latter is obvious 

since the dispersion relation can be calculated for an arbitrary system, e.g. an optical 

fiber, a plasmonic waveguide or even a metamaterial. It is only important that the 

functional dependency of ∫(J) is known.  
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2. Diffraction theory 

2.1 Scalar approximation 
Starting point will be the Helmholtz equation as used in the previous chapter 

∆!I(#, J) +
J.

\).
9(J)!I(#, J) = 0	

The scalar approximation now consists in approximating the vector with a single 

scalar quantity that corresponds to a particular component of the electric field 

!I(#, J) → oIO(#, J)^O → oIO(#, J) → æ(#, J) 

Please note this scalar treatment is:  

o exact for one-dimensional bundles with a linear polarization, so the field 

structure is invariant into a second dimension and propagates into the third 

dimension 

o an approximation in the two-dimensional case (exact conditions can be 

derived later) 

In scalar approximation with fixed frequency we have  

The equation is known as the scalar Helmholtz equation. Please note, for 

convenience we often drop the frequency dependency in the argument since it is 

implicitly assumed. For some quantities for which it is important to be reminded on 

that dependency we will maintain it. 

2.2 Angular spectrum 
It is an exact solution and valid in the realm of the scalar approximation. Since it can 

be very easily and highly efficient formulated on a computer, it often constitutes the 

method of choice while propagating fields numerically; but it also serves as an 

excellent starting point for further considerations and simplifications. 

The method can be applied if the task is to find the field distribution in the half-space 

À > 0 on the base of the field in an initial plane at, e.g., À = 0. 

∆æ(#,J) +
J.

\).
9(J)æ(#,J) = 0	

∆æ(#,J) + ∫.(J)æ(#,J) = 0	
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In general, a Fourier transform would provide 

æ(#, J) = s Ã(ª,J)v4j(5)∙?
7

-7

LE∫ 

The field is written as a superposition of normal modes (elementary plane wave 

solutions) with different propagation direction and length of the wave vector. 

However, such description is too simplistic since it does not reflect the fact that only 

specific wave vectors are allowed with a specific length. The pairs of allowed values 

for a given frequency are given by the dispersion relation: 

ªh(J) = ∫m. + ∫O. + ∫u. =
J.

\).
9(J) 

Choosing two components in this equation necessarily fixes the third. For a principal 

propagation direction of À  the natural choice is to fix ∫m  and ∫O . The third 

component then is usually understood as the propagation constant. 

Now, in the context of diffraction theory it is more convenient to introduce Greek 

letters for the components of the wave vector. No new physics is introduced 

∫m = π, ∫O = Õ, and	∫u = Œ 

 A 2D Fourier transform eventually is written as 

u(x, y, 0) = u0(x, y) u(x, y, z)

✏(!)

æ(#) = s Ã(π, Õ; À)v4(MmfvO)
7

-7

LπLÕ 
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In analogy to temporal frequencies π and Õ are called spatial frequencies. The semi-

colon here denotes Ã(π, Õ; À) depends parametrically on À. Plugging this Ansatz into 

the scalar Helmholtz equation leads to 

∆æ(#, J) + ∫.(J)æ(#, J) = 0	

…
L.

LÀ. + ∫h(J) − π. − Õ. Ã(π, Õ; À) = 0	

º
L.

LÀ. + Œh(π, Õ, J)ΩÃ(π, Õ; À) = 0	

The	 solution	 to	 this	 differential	 equation	 reads	 as	 (dropping	 the	 frequency	

argument	now)	

There	are	two	different	types	of	solution:	

a) Œh(J) > 0	 → 	πh + Õh ≤ ∫h(J)		 This	 suggests	 that	 the	 wave	 vector	 is	

real	valued	which	leads	to	homogenous	propagating	waves.	

b) 	Œh(J) < 0	 → 	πh + Õh > ∫h(J)		 This	 suggests	 that	 the	 wave	 vector	 is	

complex	valued	and	 in	particular	 the	propagation	 constant	 is	 imaginary	

valued,	which	leads	to	evanescent	waves.	

The	second	term	in	the	solution	above	(~v-4w(5)u)	causes	obviously	unphysical	

solutions	since	it	may	exponentially	grow,	therefore	we	suppress	this	solution	by	

requiring	 that	Ã.(π, Õ) = 0	independent	 on	 the	 angular	 frequencies.	 Indeed,	

eventually	 these	 solutions	 correspond	 to	 backward	 propagating	 plane	 waves	

(→ −À)	emerging	from	a	plane	at	À = ∞.	Therefore	

Ã(π, Õ; À) = Ã*(π, Õ)v4w(M,v)u	

Ã(π, Õ; À) = Ã*(π, Õ; 0)v4w(M,v)u	

Ã(π, Õ; À) = Ã)(π, Õ)v4w(M,v)u	

with	 the	 boundary	 condition	Ã(π, Õ; 0) = Ã)(π, Õ).	 The	 total	 field	 in	 the	 half	

space	of	relevance	would	be		

Ã(π, Õ; À) = Ã*(π, Õ)v4w(M,v)u +Ã.(π, Õ)v-4w(M,v)u 	

æ(#) = — Ã)(π, Õ)v4w(M,v)uv4(MmfvO)LπLÕ
7

-7

	



	 28	

From that equation it is most notably to see that the cause for diffraction (the 

broadening of the bundle in space) is the different phase accumulation in the 

propagation direction of the different spatial frequency components characterized 

by π and Õ. 

The initial angular spectrum that serves as the boundary condition in the equation is 

taken from a Fourier transform of the field in the referential plane æ)(ø, É) =

æ(ø, É, 0) 

Ã)(π, Õ) = Ø
1
2E∞

.

— æ)(ø, É)v-4(MmfvO)LøLÉ
7

-7

 

An algorithmic description for the propagation would require at first information on 

the field in the initial plane æ)(ø, É). For the moment it is not known where does this 

field comes from but we wish to assume it as given. Fourier transform provides the 

angular spectrum of the initial field Ã)(π, Õ). The propagation itself is described as a 

multiplication with v4w(M,v)u to provide a new spectra that is exact in the plane of 

interest. Inverse Fourier transforming the spectra allows to obtain the field in the 

plane / point of interest.  

It is worth to mention that once the eigenmodes and the associated dispersion 

relations of a particular space are known, the procedure can be applied to arbitrarily 

more complicated systems, e.g. photonic crystals.  

2.3 Integral Theorem of Helmholtz and Kirchhoff 
In the previous section it was shown how any component of the electromagnetic 

field (or a scalar field) in a source-free half-space À > 0 can be expressed in its values 

in a referential plane at À = 0. This at the end requires two double integrations but 

the general approach of course is very versatile and exact. At first, the initial field 

needs to be Fourier transformed (first double integration). Then the amplitude of 

each Fourier component is evolved analytically into the plane of interest. And 

eventually an inverse Fourier transform (second double integration) is made to 

express the field in real space. One can, however, also express the field components 

in their values at À = 0 by means of only one surface integral. For this purpose, one 

can use the so-called integral theorem of Helmholtz and Kirchhoff. This expresses 

the field at an arbitrary point in space in terms of an integral across a surface 
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surrounding the space of interest. For a specific choice of the Green’s function that 

emerges this will further reduce to the Rayleigh-Sommerfeld diffraction formula. The 

Green’s function here is an important concept and provides the field everywhere in 

space depending on the point-wise excitation somewhere else in space. The 

Rayleigh-Sommerfeld diffraction formula can also be derived from the angular 

spectrum approach, providing a unique link between the two approaches. 

Please note: details on Green’s function and Green’s second identify that serves as 

the starting point will be given in the tutorials. 

We require that æ(#) and “(#) are complex valued functions with single-valued and 

continuous first and second derivatives. û denotes a volume that is bound by the 

closed surface ”. Green’s second identity says that (please note that it is written 

here on purpose for a Green’s function but of course it holds for arbitrary functions)  

‘ �æ(#′)∆“(#, #′) − “(#, #′)∆æ(#′)Ä
x

LEÅ′

= — …æ(#′)
3“(#, #′)

3° − “(#, #′)
3æ(#′)
3°  L.Å′

o

 

where the derivative is done with respect to the outward normal direction. Please 

note, this is a convention, which often causes trouble and inconsistencies in the 

equations. The choice of the outward normal is done, e.g. by Goodman in the book 

“Introduction to Fourier Optics”; the inward normal is chosen in the book by Born & 

Wolf “Principles of Optics”. If consistently done of course no deviation should occur. 

We require that the field æ(#) we are eventually looking for is a solution to the 

Helmholtz equation for a homogenous isotropic medium characterized (here for 

convenience) by a specific refractive index. 

(∆ + ∫).≈.)æ(#) = 0 

The associated Green’s function that solves the problem 

(∆ + ∫).≈.)“(#, #′) = ç(#′ − #) 

is given by 

“(#, #′) =
v4l!q|?R-?|

|#′ − #|  

 

Now apply this to the specific situation  
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where we consider instead of the original volume a slightly modified volume that 

excludes a small sphere of radius ÷ around the point # that is the point of our 

observation. We want to calculate the field in this point. Please note, it is necessary 

to exclude a tiny volume around the point of singularity # (where G has a pole) since 

otherwise we could not apply Green’s second identity. At the end we will consider 

the limit of this vanishing volume going to zero and arrive at an expression for the 

field valid everywhere in the volume. 

This allows to write (∆ + ∫).≈.)“(#, #′) = 0 which eventually suggests that the left 

hand side of the Green’s second identify vanishes and only the left hand side holds 

Separating the integral into the two surfaces for the outer boundary and the inner 

boundary leads to 

−— …æ(#R)
3“(#, #R)

3° − “(#, #R)
3æ(#R)
3°  L.Å′

o1

=— …æ(#′)
3“(#, #′)

3° − “(#, #′)
3æ(#′)
3°  L.Å′

o

 

Now we can plug in the Green’s function we know “(#, #′) = z23!4|6786|

|?R-?|
 into these 

expressions. On the outer surface we have  

3“(#, #′)
3° = cos�∠(°, #′ − #)Ä ØS∫)≈ −

1
|#′ − #|∞

v4l!q|?R-?|

|#′ − #|  

n
S

S"

rn

"V 0

— …æ(#′)
3“(#, #′)

3° − “(#, #′)
3æ(#′)
3°  L.Å

⬚

o

′ = 0	
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The cos�∠(°, #′ − #)Ä here represents the cosine of the angle between the outward 

normal and the #′ − #  

For the inner surface we can take advantage of the spherical shape of ”|  that has a 

constant radius ÷ = |#′ − #|. 

“(#, #′) =
v4l!q|

÷  

and for the derivative we get with cos�∠(°, #′ − #)Ä = −1 

3“(#, #′)
3° = Ø

1
÷ − S∫)≈∞

v4l!q|

÷  

Together we obtain 

— …æ(#′)
3“(#, #′)

3° − “(#, #′)
3æ(#′)
3°  L.Å′

o1

=— …æ(#′) Ø
1
÷ − S∫)≈∞

v4l!q|

÷ −
3æ(#′)
3°

v4l!q|

÷  L.Å′
o1

 

Now, by choosing ÷ increasingly small, the integrals over these functions essentially 

become the area of a sphere × æ(#) and the area of sphere × 9}(?)
9~

 by the first mean 

value theorem for integration. Therefore, we obtain 

— …æ(#′)
3“(#, #′)

3° − “(#, #′)
3æ(#′)
3°  L.Å′

o1

≃ 4E÷. …æ(#) Ø
1
÷ − S∫)≈∞

v4l!q|

÷ −
3æ(#)
3°

v4l!q|

÷   

Here, only the first term survives in the limit of ÷ → 0. Hence: 

— …æ(#′)
3“(#, #′)

3° − “(#, #′)
3æ(#′)
3°  L.Å′

o1

= 4Eæ(#) 

All together this finally gives the theorem of Helmholtz and Kirchhoff 

 

which is just the desired result. 

æ(#) =
1
4E— …

v4l!q|?R-?|

|#′ − #|
3æ(#′)
3° − æ(#′)

3
3°

v4l!q|?R-?|

|#′ − #|  L
.ÅR

⬚

o
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2.4 Kirchhoff formulation 
Now what we would like to do in the following is to approach towards a concise 

connection between the different approaches presented before; the angular 

spectrum method that requires information on the field in an initial plane and the 

Helmholtz and Kirchhoff formulation, which requires information on the field and its 

derivative on a surface enclosing the point of interest. 

 
This is done in the following by separating the solution above to a sum of two 

integrals reflecting the following geometrical situation. The first is an integration 

across the screen, the second is an integration across a half sphere for which 

essentially we consider the limit of m → ∞.  The basic idea now consists in 

considering the sphere with an infinite large radius for which its surface area is in the 

order of m.. Now, in the integrand we can then neglect those contributions that 

decay faster than m-. since their contribution will be vanishing. For the modulus of 

the Green’s function we have 

|“(#, #′)| = ƒ
v4l!q|?R-?|

|#′ − #| ƒ = √
1

|#′ − #|√ =
1
m 

From a physical point of view (and it can be proven on a more solid base as well) it is 

reasonable to assume that the field æ(#) equally decays comparable to a spherical 

wave. Therefore, we will make a Taylor expansion of the outward normal derivatives 

that appear in the expression and only retain those terms that decay as m-*. Other 

terms will not contribute to the integral. This suggests that 

3
3°

v4l!q|?R-?|

|#′ − #| = ØS∫)≈ −
1
m∞

v4l!q�

m = S∫)≈“(#, #′) + Ÿ(m-.) ≅⏞
�→7

S∫)≈“(#, #′) 

r
R

S2S1
n

⌃
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Inserting this expression into the integral for only the semi-spherical surface we 

obtain 

æ(#) =
1
4E— º“(#, #′)

3æ(#′)
3° − æ(#′)S∫)≈“(#, #′)Ω L.ÅR

o"

 

by expressing the integral in terms of a solid angle 

æ(#) =
1
4E— LΩ“(#, #′) º

3æ(#′)
3° − S∫)≈æ(#′)Ω

o"

m. 

�→7
T⎯⎯U æ(#) =

1
4E— LΩ	m º

3æ(#′)
3° − S∫)≈æ(#′)Ω

o"

 

The integral vanishes if we require that  

which is known as the Sommerfeld radiation condition. It is also known as the 

outgoing wave condition since outward propagating fields have to obey this 

conditions. Please note, this is a condition which not every field satisfies but which 

we would like to enforce while discussing possible solutions to the wave equations. 

With that assumption the field eventually reads as 

æ(#) =
1
4E— …

v4l!q|?R-?|

|#′ − #|
3æ(#′)
3° − æ(#′)

3
3°

v4l!q|?R-?|

|#′ − #|  L
.ÅR

o9

 

Now Kirchhoff made two further assumptions. While considering the field behind 

finite apertures inside otherwise opaque screens, he assumes at first that the field 

behind the aperture (indicated by the area Σ) is the same as the incident field 

(propagating from À = −∞ into the positive direction) in the absence of the screen. 

Moreover, outside the geometrical area of the aperture the field and its derivative 

are exactly equal to zero.  

Please note, this corresponds to what people would call a thin element 

approximation. There, the field behind an object is given by the field before the 

object just multiplied with a transmission function. The transmission function can be 

complex valued (e.g. for objects as lenses only the phase is affected) but might also 

real valued (for gray filters affecting the amplitude only). It might be also be binary 

lim
�→7

mº
3æ(#′)
3° − S∫)≈æ(#′)Ω = 0	
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with values being either zero or one, while considering amplitude masks or; 

apertures in screens. 

æ(#) =
1
4E— …

v4l!q|?R-?|

|#′ − #|
3æ(#′)
3° − æ(#′)

3
3°

v4l!q|?R-?|

|#′ − #|  L
.ÅR

Ä

 

Or in a more general term leaving the choice of the Green’s function open 

The only requirements for this equation to hold are the applicability of scalar theory, 

the requirement that æ(#) and “(#, #′) satisfy the homogeneous wave scalar wave 

equation, the satisfaction of the Sommerfeld radiation condition. 

2.5 Rayleigh-Sommerfeld 
The Kirchhoff theory provides remarkably accurate results and is widely used. 

However, it also has mathematical inconsistencies. The difficulty is linked to the fact 

that it is required to know both the field and its normal derivative on the boundary 

of the screen. Particularly they are set to be zero outside the aperture of interest. 

Now, in the context of potential theory in mathematics it is known that if a two-

dimensional potential function and its normal derivative vanish together along any 

finite curve segment, then that potential function must vanish over the entire plane. 

Similarly, if a solution of the three-dimensional wave equation vanishes on any finite 

surface element, it must vanish everywhere in space. Starting from the equation 

above we can ask ourselves how to mitigate this problem? 

æ(#) =
1
4E— …“(#, #′)

3æ(#′)
3° − æ(#′)

3“(#, #′)
3°  L.ÅR

Ä

 

The obvious way is to modify the Green’s function such that the development 

leading to the above equation remains valid, but in addition either “(#, #′) or 9Å(?,?R)
9~

 

shall vanish across the entire surface ”*. This would remove the requirement on 

both the field and its normal derivative. This was done by Sommerfeld. Depending 

on whether the first or the second possible condition mentioned above is fulfilled, 

we will approach two different Rayleigh-Sommerfeld formulations. 

æ(#) =
1
4E— …“(#, #′)

3æ(#′)
3° − æ(#′)

3“(#, #′)
3°  L.ÅR

⬚

Ä
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We would like to assume that the Green’s function is not just generated from a point 

in # but we may add a second Green’s function that is located in the same ø and É 

coordinate but which emerges from a spatial point at −À. This approach is motivated 

by similar approaches in the context of mirror charges. 

“±(#, #′) =
v4l!q|?R-?|

|#′ − #| ±
v4l!q|?R-?RR|

|#′ − #′′|  

with #RR = (ø, É, −À). These Green’s functions are solutions to same differential 

equations in the volume of interest; hence they are valid. The response on the left 

side of the screen is of no importance since this is not relevant in the present 

context. The Green’s functions have the useful properties that “-(#, #′) = 0	for	#R ∈

§*	and 9Å:(?,?R)
9~

= 0	for	#R ∈ §*. Using these two Green’s functions we obtain the 1st 

Rayleigh-Sommerfeld integral as   

æ*(#) = −
1
4E— æ(#′)

3“-(#, #′)
3° L.ÅR

Ä

 

We can specify the solution by calculating the normal derivative of “-(#, #′). 

3“-(#, #′)
3° = cos�∠(°, #′ − #)Ä ØS∫)≈ −

1
|#′ − #|∞

v4l!q|?R-?|

|#′ − #|  

−cos�∠(°, #′ − #′′)Ä ØS∫)≈ −
1

|#′ − #′′|∞
v4l!q|?R-?RR|

|#′ − #′′|  

Now we have |#′ − #| = |#′ − #′′|  and cos�∠(°, #′ − #)Ä = −cos�∠(°, #′ − #′′)Ä . 

Therefore we can combine those expressions to  

3“-(#, #′)
3° = 2cos�∠(°, #′ − #)Ä ØS∫)≈ −

1
|#′ − #|∞

v4l!q|?R-?|

|#′ − #|  

S1

n

rr00

r0
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Now, for the important approximation that the distance of the point of interest 

relative to the screen is much larger than the wavelength (|#′ − #| ≫ »), we can drop 

the second term above and obtain 

3“-(#, #R)
3° = 2S∫)≈cos�∠(°, #′ − #)Ä

v4l!q|?R-?|

|#′ − #|  

This is just twice the normal derivative of the Green’s function	“(#, #′) used in the 

Kirchhoff formula. 

This expression is known as the first Rayleigh-Sommerfeld diffraction formula. The 

same procedure can be performed for the different choice of the Green’s function, 

leading to the 2nd Rayleigh-Sommerfeld solution as  

2.6 Fresnel approximation 
The equations above are useful but can be often simplified under some assumption. 

Please note, the contents of the following two chapters has been already to some 

extent discussed in the lecture “Fundamentals of Optics and Photonics” and the 

following shall only serve as a reminder. 

At first we would like to assume that øR, É′ ≪ À and ø, É ≪ À. This suggests at first 

the cosine in the equation above can be approximated as cos�∠(°, #′ − #)Ä ≈ 1. A 

back of the envelope approximation says that this is correct to within 5% for angles 

smaller than 20°, which is optically pretty large. 

Moreover, *

|?R-?|
 can be safely approximated as  *

|?R-?|
≈ *

u
 and it is a term that will 

largely affect the amplitude. However, how to approximate the phase term 

æ*(#) = −
1
2E— æ(#R)

3“(#, #R)
3° L.ÅR

⬚

Ä

	

æ*(#) =
≈
S»)

— æ(#R)
v4l!q|?R-?|

|#′ − #| cos�∠(°, #′ − #)ÄL.ÅR
⬚

Ä

	

æ.(#) =
1
4E— …“f(#, #′)

3æ(#′)
3°  L.ÅR

⬚

Ä

	

æ.(#) =
1
2E— …“(#, #′)

3æ(#′)
3°  L.ÅR

⬚

Ä
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v4l!q|?R-?|? We will assume in the following that ÀR = 0, hence putting the screen 

into the center of the coordinate system. With 

|#′ − #|. = À. + (ø′ − ø). + (É′ − É). 

we can expand the square-root into a Taylor series of second order 

∫)≈|#′ − #| = ∫)≈À‚1 + …
ø′ − ø
À  

.

+ …
É′ − É
À  

.

≅ ∫)≈À ê1 +
1
2…

ø′ − ø
À  

.

+
1
2…

É′ − É
À  

.

ë 

Plugging this into the first Rayleigh-Sommerfeld diffraction formula simplifies the 

expression to 

This is known as the Fresnel formula. Here, the expansion of the square root still 

depend on øR, ø′., ÉR, „nd	É′.. 

The advantage of the formula only pays of if we slightly reformulate the integral such 

that it will appear as a Fourier transform of the initial field multiplied with a suitable 

pre-factor. In particular we have 

æÉ'!Ñ1!Ö(#) =
≈v4l!quv4

l!q
.
Üm"fO"á

u

S»)À
— ¥æ(#R)v4

l!q
.
ÜmR"fOR"á

u µ v-.84à
qm
t!u

m7f
qO
t!u

O7âL.ÅR
Ä

 

where qm
t!u

 and qO
t!u

 are the spatial frequencies. 

Please note in the Fourier space this approximation corresponds to assuming that 

π. + Õ. ≪ ∫. which allows to expand the square root for the propagation constant 

into a Taylor series and retaining only the two lowest orders in the expansion, i.e.  

This equation describes a spherical wave in paraxial approximation. Starting from the 

original expression obtained in the section on the angular spectrum method for the 

field in terms of its plane wave spectrum 

æ(#) = — Ã)(π, Õ)v4w(M,v)uv4(MmfvO)LπLÕ
7

-7

 

æÉ'!Ñ1!Ö(#) =
≈v4l!qu

S»)À
— æ(#R)v4

l!q
.u

ä(mR-m)"f(OR-O)"ãL.ÅR
⬚

Ä

	

v4w(M,v)u ≈ v4l!quv-4
u
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we can express the field in Fresnel approximation as 

æÉ'!Ñ1!Ö(ø, É, Àå) = — Ãf(π, Õ; Àç)v4l!qu;v
-4

u;
.l!q

ÜM"fv"áv4(MmfvO)LπLÕ
7

-7

 

where the Fourier spectrum behind the aperture at Àç is given by Ãf(π, Õ; Àç) and 

we propagate the field towards Àå. 

2.7 Fraunhofer approximation 
The last possible approximation is the far-field approximation. This imposes a further 

approximation to the square root in the equation for the Fresnel approximation 

developed above by neglecting the terms that depend on ø′. and É′.. 

∫)≈|#′ − #| ≅ ∫)≈À +
∫)≈
2

(ø. + É.)
À − ∫)≈

(øøR + ÉÉR)
À +

∫)≈
2

(ø′. + É′.)
À 	

→ 										∫)≈|#′ − #| ≅ ∫)≈À +
∫)≈
2

(ø. + É.)
À − ∫)≈

(øøR + ÉÉR)
À 	

æÉ'%é1è0ê!'(#) =
≈v4l!quf4

l!q
.
Üm"fO"á

u

S»)À
— æ(#R)v-.84à

qm
t!u

m7f
qO
t!u

O7âL.ÅR
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Now this is just the Fourier transform using 

Ã ≤∫
ø
À , ∫

É
À≥ = Ø

1
2E∞

.

— æ(#R)v-4ël
m
u
m7fl

O
u
O7íL.ÅR

Ä

 

Here, it is just important to memory that the field in the far-field corresponds to the 

Fourier transform of the transmission function. Applications will be discussed in the 

seminar.  

2.8 Method of stationary phase 
The method of stationary phases is in general a method to calculate integrals that 

read as 

≠ = —u(‰, z)v4ìî(H,ï)L‰Lz 

in an approximate manner whenever Â ≫ 1 and if u(‰, z) varies slowly. As we will 

argue below, these approximations hold in specific regimes for the Fresnel integral 

æÉ'%é1è0ê!'(#) =
≈(2E).

S»)À
v4l!quf4

l!q
.
Üm"fO"á

u Ã≤∫
ø
À , ∫

É
À≥	
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which lead to the Fraunhofer expressions if the method of stationary phases is 

applied. 

The idea for the application of the method of stationary phase is the following. If 

Â ≫ 1 the exponent in the integral oscillates rapidly even if there is only a small 

change in the variation of F(‰, z). It is simply the product of the two that counts. If 

on the scales where the exponent varies rapidly the function u(‰, z) varies only 

slowly, the different contribution in the integral compensate each other. There is 

however one exception. At the stationary points characterized by the coordinates 

‰e and ze for which it holds that 

3F
3‰√

H,,ï,

= FHÊH,,ï, = 0 

and simultaneously 

3F
3z√

H,,ï,

= FïÊH,,ï, = 0 

the integral will not vanish. Instead, the integral can be approximated as a sum 

across the stationary points 

≠ =
2E
SÂ ~

1

ÁFHH(e)Fïï(e) −
1
4FHï(e)

.

u(‰e, ze)v4ìî(H,,ï,)
ñ

e:*

 

The exact derivation of this expression shall be of no concern here and can be done 

in the exercises. Now we wish to apply the method of stationary phases to the 

Fresnel integral using the angular spectrum representation. The integral is slightly 

reformulated to simplify the identification of the link to 

M<=>?@>A(N, O, PB) = Q*C"DE#R SF(T, U; PG = 0)Q
*C"DE#HI

%
C"D

$
E#F

&
C"D
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F
&$
C"$D$

NO
XTXU

P
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Now we make the substitutions ‰ = M

l!q
, z = 5

l!q
 and Â = i0<j6  from which we 

require that Â ≫ 1. We can identify the function F(‰, z)	as 

F(‰, z) = ‰
ø
Àå

+ z
É
Àå

−
1
2
(‰. + z.) 

This allows to write the Fresnel integral as 

æÉ'!Ñ1!Ö(ø, É, Àå) = ∫).≈.v4ì— Ãf(∫)≈‰, ∫)≈z; Àç = 0)v4ìî(H,ï)L‰Lz
7

-7
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The derivatives we need to calculate in the expressions above and to calculate the 

stationary points are 

9î

9H
= m

u;
− ‰, 9î

9ï
= O

u;
− z, 9

"î

9H"
= 9"î

9ï"
= −1,  9

"î

9H9ï
= 0 

The only stationary point is then at 

‰* =
m

u;
 and z* =

O

u;
 

and the function value F(‰*, z*) itself is then 

F(‰*, z*) =
ø. + É.

2Àå
 

Inserting this into the approximate expression for the integral  

≠ =
2E
SÂ ~

1

ÁFHH(e)Fïï(e) −
1
4FHï(e)

.

u(‰e, ze)v4ìî(H,,ï,)
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gives exactly the expression for the field in Fraunhofer approximation 

æÉ'%é1è0ê!'(k, l, j6) =
≈(2E).

S»)j6
v4l!q7#Ãf Ø∫

ø
j6
, ∫

É
j6
; Àç = 0∞ v4

l!q
.7# Üm

"fO"á 

Again, we see that the amplitude distribution of the diffraction pattern corresponds 

to the Fourier transform of the field behind the screen (inside the aperture). The 

interpretation is such that at any spatial position (k, l) only the spatial frequency with 

≤π = ∫ m

7#
, Õ = ∫ O

7#
≥  and its respective spectral amplitude Ãf ≤∫

m

7#
, ∫ O

7#
; Àç = 0≥ 

contribute to the diffraction pattern. The contribution of all other plane waves 

cancels out by interference.  

To make this approximation applicable, we require that the ratio of aperture size 

with respect to wavelength is small (the angular spectrum varies then smoothly with 

the angular frequency) and the ratio of aperture to propagation distance should be 

small as well (then Â ≫ 1). This condition is expressed in terms of the Fresnel 

number that should be smaller than one tenths 

xF =
„
»
„
j6

≲ 0.1 
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2.9 Basics of holography 
As we have seen in the previous chapters, the full visual information concerning an 

object is encoded in the field distribution in a given plane (assuming that the wave 

satisfies suitable radiation boundary condition). This requires information on the 

field concerns both amplitude and the phase. This complex field propagates in space 

and evolves and eventually can be perceived by an external observer, e.g. by forming 

an image with an eye. The idea of holography is to record the field emanating from 

an object and to reconstruct at a later stage for other purposes. In modern times, we 

also use computer-generated holograms to express wave fields from objects that do 

not exist in reality. The method has been used to cause many interesting artistic 

effects but there are also many industrial applications. Examples are the metrology 

of complicated lenses whose generated wave fronts are interferometrically 

compared to wave fronts from perfect lenses that have been either generated in a 

computer or that were recorded once from a perfect device. The challenge in 

holography is the reconstruction of the phase of the field emanated from such 

objects. In 1948 Dennis Gabor developed a method that allows recording the 

information on the wave field using a coherent reference wave in a medium that is 

in turn only responsive to the intensity. The method was such ground breaking that 

Dennis Gabor was awarded the Nobel prize in physics in 1971. Holography in general 

is a two-step process. First, a recording takes place. Second, a reconstruction takes 

place. 

2.9.1 Reconstruction of a hologram 
To start with, we consider a monochromatic scalar field (also called the primary 

field) æ(#), which is emanated by an object. Please don’t think too mysterious here. 

You simply use a coherent light source, illuminate the object of interest, and the 

scattered field from the object will contain all the information from it. Eventually, 

this is just the way we perceive our surrounding. In addition we consider a reference 

wave that is for simplicity here a plane wave æ)(#) = „)v4j!∙?. Now we define as È 

the coordinates along some surface (for simplicity a plane) in which we wish to place 

later our responsive recording material. The intensity in this plane results from the 

superposition of the object and the reference plane 
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≠(È) = |æ(È) + æ)(È)|. = |„)|. + „)∗æ(È)v-4j!∙ó + „)æ∗(È)v4j!∙ó + |æ(È)|. 

Under the assumption that the intensity of the reference wave is much larger than 

the wave emanated from the object, the last term in the expression above can be 

neglected for simplicity. By placing a traditional recording media made of a thin film 

that blackens proportional to the local intensity into the considered plane and 

developing afterwards the film, we obtain a filter that has a local transmission 

function corresponding to the recorded intensity 

%(È) = 1 − Œ≠(È)	

where	Œ	is	here	some	sort	of	contrast	function	that	is	obviously	depends	on	the	

used	 material	 and	 on	 the	 recording	 conditions.	 Illuminating	 this	 filter	 with	 a	

reconstruction	 wave	æ*(#) = „*v4j9∙?	that	 corresponds	 to	 the	 reference	 wave	

used	 for	 the	 recording	 (albeit	 with	 an	 arbitrary	 amplitude	 and	 propagation	

direction	at	this	moment),	the	field	behind	the	filter	is	given	by	

Í(È) = %(È)æ*(È)	

= „*(1 − Œ|„)|.)v4j9∙ó − Œ„*„)∗æ(È)v4(j9-j!)∙ó − Œ„*„)æ∗(È)v4(j9fj!)∙ó 	

These	 are	 obviously	 three	 different	 terms	 that	 can	 be	 best	 understood,	 while	

setting	ª* = ª).	

• The	 first	 terms	 corresponds	 to	 a	 plane	 wave	 that	 propagates	 into	 the	

direction	of	 the	 reconstruction	wave.	This	wave	 is	a	 consequence	of	 the	

possible	 imperfect	modulation	of	the	recorded	hologram,	 i.e.	Œ	is	smaller	

than	unity.	 This	 contribution	 can	be	 engineered	 to	 be	 sufficiently	 small,	

e.g.	by	a	suitable	engineering	of	the	hologram	or	actually	by	Fourier	filter	

techniques.	

• The	 second	 term	 corresponds	 up	 to	 a	 constant	 factor	 to	 the	 field	

emanated	 by	 the	 considered	 object	æ(È).	 This	 is	 the	 field	 one	 is	 usually	

interested.	

• The	 third	 term	 is	 the	 complex	 conjugate	 of	 the	 object	 field	æ(È)	and	 it	

propagates	into	the	direction	v4.j!∙ó 	
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3. Optics in anisotropic materials 
Thus far, we were only concerned with homogenous local, dispersive and isotropic 

material. We saw eventually that the normal modes of a space filled with such 

material are elliptically polarized plane waves. Understanding the subtleties of the 

dispersion relation is the key to describe on a sound theoretical base the 

propagation of light in such materials. Although many materials obey these 

requirements of isotropy (glasses, air, water, metals), many materials are not 

isotropic but anisotropic. They offer unique opportunities in the context of many 

applications. To make use of them, it is therefore important to understand the light 

propagation in such materials. In the following we discuss the basics of the light 

propagation in such materials. Again, we are primarily concerned with the discussion 

of the normal modes, i.e., their field distribution as well as the governing dispersion 

relation. 

 

3.1. Susceptibility and permittivity tensor 
Thus far we considered isotropic materials. Their optical properties are independent 

on the direction of light propagation and the direction of the electric field 

polarization that is considered as illumination. In many optical materials, especially 

crystals, the induced polarization, however, depends on the direction of the electric 

field. Understanding the polarization for bound charges in terms of a harmonic 

oscillator, it suggests that the amplitude of the displacement shall then depend on 

the direction of the electric field. This eventually reflects the symmetry of the 

crystals.  

Examples for anisotropic materials and possible applications are 

Lithiumniobate (LiNbO3)  ® electro-optical material 

2 Chapter 1. Introduction

Gas, liquid, amorphous solid Polycrystalline Crystalline Liquid crystal

Figure 1.2: Positional and orientational order in different kinds of materials. The pic-

ture is taken from [2].

is isotropic. Gas, liquid, and amorphous solid have such kind of property and
they are typical isotropic media.

• If the orientation of the molecules or arrangement in space has a certain order
and preferred direction, the medium is crystalline-like, and is anisotropic. In
general, crystals has such molecular organizations.

• In some materials, the crystalline structure only exists in a rather small do-
main. In that domain, it is anisotropic. On a larger scale, the disjointed crys-
talline grains have random orientations as compared to each other. Thus on
the macroscopic scale, the medium is isotropic. This type of material is poly-
crystalline.

• Liquid crystal (LC) molecules are anisotropic, due to the rod-like or dish-like
shape. The LC molecules can be lined up by using some external strength,
such as, an electric field, a flow, or an alignment layer. When the molecules
are aligned, the whole medium is optical anisotropic.

The optical anisotropy can be described by the refractive index n and dielectric per-
mittivity ε. The relation between these two physics identities is: ε= n2. For isotropic
materials, n and ε are constant, whereas for anisotropic materials, there are more
than one value for n and ε becomes a tensor of rank 2 which we shall denote by ε.
For time-harmonic fields, the relative dielectric permittivity tensor connects the elec-
tric displacement vector D and the elelctric field E,

D = ε0εE, (1.1)

where, ε0 is the dielectric permittivity in a vacuum and the relative dielectric permit-
tivity tensor ε can on the Cartesian basis

{

x̂, ŷ, ẑ
}

be written as,

ε=





εxx εx y εxz

εy x εy y εy z

εzx εz y εzz



 . (1.2)

For a non-absorbing medium, the tensor is real symmetric in most cases. However, it
can also be complex hermitian, i.e., εi j = ε∗j i where ’∗’ denotes the complex conjugate
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Quartz    ® polarizers 

Liquid crystals   ® display elements, nonlinear optics 

Multiple quantum wells ® optoelectronics 

We will stick to a few assumptions in the following that shall simplify our lives: 

• We will consider only a single frequency in time (monochromatic field) and 

space (plane wave) 

• We will consider materials to be free of absorption (otherwise expansion into 

normal modes wouldn’t make sense in each case) 

For an isotropic material the normal modes were elliptically polarized, plane, 

monochromatic waves. The functional dependency of the polarization and the 

electric displacement have been obeying the following equations: 

-Y(#, J) = 9)q(J)!I(#, J) 

+Y(#, J) = 9)9(J)!I(#, J) 

In the following, we will drop the bar above the field vectors since we consider in 

each case only monochromatic fields: !I(#, J) → !(#, J) . Now, in the case of 

anisotropic materials where the induced polarization will depend on the magnitude 

of the electric field in the respective direction we have 

Here, we implicitly assume that the sum convention according to Einstein applies 

(summation over double indices). Please note, the susceptibility here is a 2nd rank 

tensor ÎÏ(J) and q4D(J) are the components of the tensor in a specific coordinate 

system. 

Important in this equation is: 

• - ∦ ! , the induced polarization is not anymore parallel to the electric field 

• The susceptibility tensor reflects the crystal symmetry, but the light will not 

probe for the actual arrangement of the atom due to largely disparate length 

scales. A typical wavelength is 500 nm whereas the lattice spacing of the 

crystal is rather in the order of 0.5 nm, the field therefore doesn’t probe the 

properties of the periodic arrangement at the level of individual atoms; but 

the field remains to be sensitive against the symmetry. 

k4(#,J) = 9)~ q4D(J)
E

D:*
oD(#,J) ≝ 9)q4D(J)oD(#,J)	
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Analog equations and considerations hold for the electric displacement field 

«4(#, J) = 9)94D(J)oD(#, J) 

+(#, J) = 9)ÔÏ(J)!(#, J) 

• + ∦ !  

• ÔÏ = �94DÄ is the permittivity tensor 

A last important quantity, which we will use in the following occasionally, is the 

inverse permittivity tensor Ò = (ÔÏ)-ò = �±4DÄ , leading to ±4D(J)«D(#, J) =

9)o4(#, J). 

What are the properties of the tensors? For simplicity, we drop in the following the 

frequency dependency in the arguments 

±4D , 94D    ® real valued in the transparency region (which we are 

interested in here) 

 ® tensors are symmetric, leaving only six independent 

components ±4D = ±D4  and 94D = 9D4, moreover the matrices are 

Hermitian, suggesting that the element in the i-th row and j-th 

column is equal to the complex conjugate of the element in 

the j-th row and i-th column, for all indices i and j  

Proof: 

Considering source-free Maxwell’s equations in the Fourier space: 

#/0	! = SJ;), 

#/0	, = −SJ9)ÔÏ! 

The magnetic field can be eliminated from that equation to obtain the vector 

Helmholtz equation for the electric field: 

#/0	#/0	! − J.9);)ÔÏ! = Ú 

It should be noted that, in general, the vector Helmholtz equation in anisotropic 

media is not equivalent to the component-by-component scalar Helmholtz equation 

even for a homogenous medium. The problem is that in the anisotropic case it does 

not follow from 456	+ = 	456	(ÔÏ!) = Ú that	456	! = 0. 

Now, for the average over long time intervals for the divergence of the complex 

Poynting vector (the dissipated energy) it follows that 

〈456	§〉 =
1
2 	456	

(!	 ×	,∗) 
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=
1
2,

∗ ∙ #/0	! −
1
2! ∙ #/0	,

∗	 

=
SJ;)
2

|,|h −
SJ9)
2 ! ∙ (ÔÏ∗!∗)	 

= 2SJ〈Íe〉 −
SJ9)
2 ! ∙ (ÔÏ∗!∗)	 

where we introduced 〈Íe〉 as the time average of the magnetic energy density. In 

analogy to the case of an isotropic material, the second term on the right hand side 

of the equation should be equal to −2SJ〈Íz〉, eventually corresponding to the 

electric energy density for an anisotropic material 

〈Íz〉 =
9)
4 ! ∙ (ÔÏ∗!∗) 

On the other hand we have an expression for the time averaged electric energy 

density that reads as 

〈Íz〉 =
1
4ℜ

(! ∙ +∗) 

〈Íz〉 =
9)
4 ℜ�! ∙ (ÔÏ∗!∗)Ä 

〈Íz〉 =
9)
8
[! ∙ (ÔÏ∗!∗) + ÔÏ! ∙ !∗] 

Both expressions for the electrical energy density are only equal if and only if 

ÔÏ! ∙ !∗ = ! ∙ (ÔÏ∗!∗) 

Since for two complex vectors Û and Ù it always holds that 

ÔÏÛ ∙ Ù∗ = Û ∙ ÔÏôÙ∗ 

where ε4Dö = εD4∗  it follows that the left hand side can be written as 

! ∙ ÔÏô!∗ = ! ∙ (ÔÏ∗!∗) 

So it can be concluded that the permittivity tensor at least is equal to its transpose. 

Furthermore it can be shown that ℑ�! ∙ (ÔÏ∗!∗)Ä = 0 

® this should also hold for an arbitrary electric field 

a) this holds for example also for the case that all components are zero except 

the ø-component of the electric field om ≠ 0 

ℑ�om ∙ (εmm∗ om∗)Ä = |om|.ℑ(εmm∗ ) = 0 

The same holds for εOO and εuu, ® this suggests that all diagonal components 

of the tensor are real valued 

b) For the other components it holds  
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ℑ�εmO∗ omoO∗ + εOm∗ oOom∗Ä = ℑ�εmO∗ omoO∗ − εOmoO∗omÄ 

= ℑ�OεmO∗ − εOmPomoO∗Ä 

= 0 

From that expression we can conclude that εmO∗ = εOm. The derivation can be 

performed for all possible of-diagonal entries of the permittivity tensor, 

which shows that it is a hermitian tensor. Similar deviations can be made for 

±4D  and q4D. 

From now we assume that all tensors are real valued. However, this suggests by no 

means that of-diagonal elements are always real-valued. They are important, e.g., in 

the context of magneto-optics and the materials are called gyrotropic materials. 

A further important concept is the idea of a principle coordinate system in which the 

tensors are diagonal. This is generally possible for all Hermitian matrices. This will be 

shown in the following at the example of the inverse permittivity tensor. Only in this 

coordinate system it will hold that + ∥ ! . Mathematically, this can be expressed in 

terms of an eigenvalue equation. It is required that 

9)o4 = ±4D«D ≐ »«4  

This requires a non-trivial solution to the equation, which asks for a vanishing 

determinant 

detO±4D − »≠4DP = 0 

where the identity matrix has been introduced as ≠4D = ç4D. 

This is an equation of 3rd order that has three roots as solutions, which are called in 

the following »(M).  The associated eigenvectors read as  

±4D«D
(M) = »(M)«4

(M) 

The eigenvectors are orthogonal because 

±4D«D
(M) = »(M)«4

(M) and ±4D«D
(v) = »(v)«4

(v) 

If we multiply both equations with the respective other eigenvector and subtract 

both we obtain 

«4
(v)±4D«D

(M) − «4
(M)±4D«D

(v) = �»(M) − »(v)Ä«4
(M)«4

(v) 

«D
(v)±D4«4

(M) − «4
(M)±4D«D

(v) = 0 

because ±D4 = ±4D. Here it can be concluded that «4
(M)«4

(v) = 0 for all »(M) ≠ »(v). 
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The principle axes now reflect the crystal symmetry. 

94D = 94ç4D,  ±4D = ±4ç4D =
*

I2
ç4D. 

An anisotropic material can be in most cases fully described using three different 

dielectric functions (in the principle coordinate system). In most cases the analysis is 

done in the principle coordinate system; although in the end a transformation back 

in the coordinate system of the laboratory is made; but the principle coordinate 

system makes everything much easier. 

3.2 Optical classification of crystals 
a) Isotropic 

• Three crystallographic identical and perpendicular axes 

• Cubic crystals (diamond, silicon) 

 

• 9*(J) = 9.(J) = 9E(J) 

• It follows in that particular case «4 = 9)9o4  
• The same type of descriptions applies for gases amorphous solid 

states, liquids and polycrystalline materials with grain sizes much 

smaller than the wavelength such that light on a mesoscopic scale will 

not resolve the fine structure  

b) Uniaxial 

• Two crystallographic equivalent directions 

• Trigonal, tetragonal, hexagonal crystals 

223 

6.2. Die optische Klassifikation von Kristallen 

a) isotrop  

o  drei kristallographisch äquivalente, senkrechte Achsen   

o    kubische Kristalle (Diamant, Si....)      

 

� � � � � �1 2 3H Z  H Z  H Z    o    � �0i iD E H H Z    

wie: Gase, amorphe Festkörper, Flüssigkeiten, polykristalline Medien  

 

b) optisch einachsig (uniaxial)  

o  zwei kristallographisch äquivalente Richtungen   

o   trigonal, tetragonal, hexagonal 

                            

� � � � � �1 2 3H Z  H Z z H Z    

�94DÄ = ˜
9*(J) 0 0
0 9.(J) 0
0 0 9E(J)

¯	
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• 9*(J) = 9.(J) ≠ 9E(J) 

c) biaxial 

• there are no two identical crystallographic directions 

• orthorhombic, monocline, tricline 

 

• 9*(J) ≠ 9.(J) ≠ 9E(J) 

3.3. The index ellipsoid 
The index ellipsoid is a geometrical representation of the inverse dielectric tensor. 

The defining equation for the index ellipsoid is a surface of second order. The 

advantage of the representation is its invariance against coordinate transformations. 

Its is defined as 

~ ±4D
E

4,D:*
ø4øD = 1 

The index ellipsoid defines a surface of constant electric energy density since it can 

be understood as 

∑ ±4DE
4,D:* «4«D = 9) ∑ o4«4E

4:* = 2Ízõ  

In the principle coordinate system this index ellipsoid can be defined as 

223 

6.2. Die optische Klassifikation von Kristallen 

a) isotrop  

o  drei kristallographisch äquivalente, senkrechte Achsen   

o    kubische Kristalle (Diamant, Si....)      

 

� � � � � �1 2 3H Z  H Z  H Z    o    � �0i iD E H H Z    

wie: Gase, amorphe Festkörper, Flüssigkeiten, polykristalline Medien  

 

b) optisch einachsig (uniaxial)  

o  zwei kristallographisch äquivalente Richtungen   

o   trigonal, tetragonal, hexagonal 

                            

� � � � � �1 2 3H Z  H Z z H Z    
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c) optisch zweiachsig (biaxial)  

o  keine zwei kristallographisch äquivalente Richtungen   

o    orthorhombisch, monoklin, triklin 

                     

 

� � � � � �1 2 3H Z z H Z z H Z  

 
6.3. Das Indexellipsoid 
 o   geometrische Veranschaulichung des inversen dielektrischen Tensors  ı̂    

Vektor: o unabhängig vom Koordinatensystem, einfach im Hauptachsen-

system  

  

Tensor: o symmetrischer Tensor o als Fläche 2. Ordnung darzustellen   

o   invariant gegenüber Koordinatentransformationen  

> @ 1ˆ ˆ � ı İ  

3

, 1

1ij i j
i j

x x
 

V  ¦   Fläche 2. Ordnung 

 wegen:  
3 3

0
, 1 1

2ij i j i i
i j i

D D E D w
  

V  H  ¦ ¦ el  

 in Hauptachsen:  
22 2

2 2 2 31 2
1 1 2 2 3 3

1 2 3

1xx x
x x xV � V � V  � �  

H H H
 

 

±*ø*. + ±.ø.. + ±EøE. =
ø*.

9*
+
ø..

9.
+
øE.

9E
= 1 
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Please note, very often the radii of the index ellipsoid are associated to the indices in 

the principle coordinate system. On purpose we have not put this onto the axes of 

the coordinate system since this is misleading and would contradict the philosophy 

of the course. The index is a wave optical property used to describe the evolution of 

a plane wave; it is not a material property as discussed up to that point. 

In the degenerate case of a cubic symmetry it remains to mention that this is a 

sphere; and for a uniaxial crystal this will be a rotational symmetric structure around 

the À-axis with ≈* = ≈.. 

3.4. Normalmodes in an anisotropic material 
As a reminder I would like to stress that a normal mode is a solution to the source 

free wave equation which experiences upon propagation only a spatial-temporal 

phase variation, the amplitude and the polarization are preserved and constant.  The 

spatial-temporal phase variation is connected via the dispersion relation, which 

expresses the functional dependency of the frequency on the wave vector J = J(ª) 

or the functional dependency of the wave vector on the frequency	ª = ª(J). 

For an isotropic medium the normal modes are monochromatic plane waves 

!(#, %) = !5v4(j∙?-56) 225 

D

D

k
→

x

y

3n

2n1n

 

Tensor statt eines Skalars o Hauptachsen:  nH  i i    

Degenerierte Fälle:  

kubisch: Kugel 

einachsig: rotationssymmetrisch um  z �  Achse und  n n 1 2  

 

besser statt 

i in o H  

p
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✏2

p
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ªh(J) = ∫h(J) =
J.

\).
9(J) 

with 9(J) > 0 and ª ∙ !5 = ª ∙ +5 = 0. The wave is usually elliptically polarized 

and the state of polarization is preserved upon propagation. Now we are looking for 

the normal modes in an anisotropic medium. The solution while propagation in the 

principal coordinate system is quite easy and its consideration is insightful, 

afterwards we want to generalize it to an arbitrary propagation direction. 

3.4.1. Normal modes for a propagation in the principal coordinate system 
The assumption is that the principal axes are in the ø, É, À  directions. We 

furthermore require that ª ∙ !5 = ª ∙ +5 = 0. We assume for the moment that 

propagation is in À direction (ª → ∫u). This suggests that «m , «O ≠ 0. The field can be 

arbitrary in the ø − É − plane. Finally, the electric displacement is linked to the 

electric field via «4 = 9)94o4  (please note, no summation here). 

 
Only in this particular case we have the unique situation that the two possible 

polarization directions are decoupled. 
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Tensor statt eines Skalars o Hauptachsen:  nH  i i    
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D1

«*, 9* 	→ «*v4(j9 ∙?-56) = «*v4ú9v-456 				with					ª*. =
J.

\).
9*(J) 

«., 9. 	→ «.v4(j"∙?-56) = «.v4ú"v-456 				with					ª.. =
J.

\).
9.(J) 
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From that it follows that + ∦ ! . This requires to conclude that the elliptical 

polarization is not a normal mode sustained by the material, since the state of 

polarization would change upon propagation. However, this doesn’t hold if the 

electric field is polarized along one of the principal axes. Therefore, these plane 

waves linearly polarized along one of the principal axes are the normal modes of the 

system. 

+(ù) = ˘«*v4(jQ∙?-56)˙^* 				→ 					 ªù. =
J.

\).
≈ù. 				→ 					normal	mode	a 

+(û) = ˘«.v4(jR∙?-56)˙^. 				→ 					 ªû. =
J.

\).
≈û. 				→ 					normal	mode	b 

There exist two perpendicular linearly polarized eigenmodes for which + ∥ ! holds. 

This is a very simplified and fortunate situation. The question is rather how do the 

normal modes look like for an arbitrary propagation direction? 

3.4.2. Normal modes for an arbitrary propagation direction  

3.4.2.1 Geometrical construction I 
For a given frequency and a given crystal the permittivity tensor is known and with 

that the index ellipsoid. We furthermore define a direction of the propagation 

direction we are interested in ® ª/∫. Now, we need to sketch the plane that is 

perpendicular to ª and which goes through the origin of the index ellipsoid. 
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6.4.2. Normalmoden bei beliebiger Ausbreitungsrichtung  o     
 Dispersionsrelation 
 
6.4.2.1. Geometrische Konstruktion I 
 -  Vorgabe von  Z   und Kristall  o    iH o   Indexellipsoid bekannt 

 - Vorgabe der Ausbreitungsrichtung  / ko k  

  Ebene durch Ursprung des Indexellipsoids und senkrecht zu  k   

zeichnen 
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c c
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  a b b  
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Now the cross-section is an ellipse, which is just the index ellipse. The principal axes 

correspond to the refractive indices ≈ù  and ≈û  of the normal modes in this 

propagation direction. They obey the same equation as above, ªù,û. = 5"

,!
" ≈ù,û. .	The 

directions of the two principal axes correspond to the polarization direction of +(ù) 

and +(û).	!(ù) and !(û) follow from that according to o4
(ù,û) = ü2

(Q,R)

I!I2
. With that it 

follows that +(†,°) ∦ !(†,°) and, moreover, !(†,°) is not perpendicular to ª. 

This has a direct consequence on the Poynting vector, which is no longer parallel to 

the wave vector! 

〈§〉 =
1
2ℜ

(! × ,∗) 				→ 		ª ∦ 〈§〉	because	! ⊥ 〈§〉	 

 
In the case that the index ellipse is a circle, the direction of the associated wave 

vector defines the optical axis of the crystal. 

3.4.2.2 Derivation of the dispersion relation 
In the isotropic case I just want to remind you that the length of the wave vector was 

independent on its direction. The dispersion relation was 

ªh(J) = ∫h(J) =
J.

\).
9(J) 

and the normal modes where elliptically polarized plane waves according to 

!(#, %) = !5v4(j(5)∙?-56) 

+(#, %) = +5v4(j(5)∙?-56) 

In the anisotropic case the normal mode is again a plane monochromatic wave 

~v4(j(5)∙?-56) but the wave number now explicitly depends on the propagation 

direction, so ∫(J, direction). Furthermore, we make the educated guess that the 
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x If the index ellipse is a circle, the direction of this particular k-vector defines 
the optical axis of the crystal. 

6.4.2.2 Mathematical derivation of dispersion relation 
Let us now derive the dispersion relation for normal modes of the form 

 
� �^ `
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( , ) exp

( , ) exp

t t

t t

 Zª º¬ ¼

 Zª º¬ ¼

E r E k r

D r D k r

i

i
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In the isotropic case we found the dispersion relation 

 
2

2 2
2( ) ( ) ( )k
c
Z

Z  Z  H Zk  

where the absolute value of the k-vector is independent of its direction. The 
fields of the normal modes are elliptically polarized. 

In the anisotropic case the normal modes are again monochromatic plane 

waves � �^ `exp tZ Zª º¬ ¼k r� i � , but the wavenumber depends on the direction u
of propagation 

 � �,k k Z u  

and the polarization of the normal modes is not elliptic. 

In the following, we start again from Maxwell’s equations and plug in the 
plane wave ansatz. We will use the following notation for the directional 
dependence of k : 

 
1 1

2 2

3 3

k u
k k u
k u

§ · § ·
¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸
¨ ¸ ¨ ¸
© ¹ © ¹

k   with 2 2 2
1 2 3 1u u u� �   

Our aim is to derive 1 2 3( , , )k k kZ  Z  or 1 2 3,( , , )u uk uZ  Z  or 1 2 3( , , , )k k u u u Z . 

We start from Maxwell's equations for the plane wave Ansatz:  

 00  ZPk D k E H< u  

 0  �Zk H k H D< u  
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Now we follow the usual derivation of the wave equation: 
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� Here k E�  does not vanish as in the isotropic case! 

� In the principal coordinate system and with 0i i iD E H H  we find 
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Note: for isotropic media the r.h.s. of this equation vanishes (k E = 0� ).  

Thus, we have the following problem to solve:  
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The straightforward way to solve this problem is using > @det .. 0 , which gives 

the dispersion relation ( )kZ Z  for given /ik k . However, there is a more 

easy way to obtain the dispersion relation: 

trick: 
2

2
2 i i i j j

j

k E k k E
c

§ ·Z
H �  �¨ ¸

© ¹
¦  

 � �2

2
2

i
i j j

jic

kE k E
kZ

 �
H � ¦  

Now we multiply this equation by ik , perform a summation over the index ' i ' 
and rename i jl   on l.h.s: 
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Because div 0j j jk E¦E  z  we can divide and get the (implicit) dispersion 

relation: 
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polarization of the normal modes is not elliptically anymore. For a proper notation of 

the directional dependency we introduce a component notation for the wave vector:  

ª = º
∫*
∫.
∫E
Ω = ∫ º

æ*
æ.
æE
Ω 		with			æ*. + æ.. + æE. = 1 

The goal of the following derivation, just as before, is the identification of the 

functional dependency of J = J(∫*, ∫., ∫E)  or J = J(∫, æ*, æ., æE) or the other 

way around	∫ = ∫(J, æ*, æ., æE). Please note, eventually the latter expressions are 

slightly redundant since for two given component of the vector that defines the 

direction, the third is fixed by the constraint that the sum of the square of the 

components is unity. There is only one equation with four unknowns that have to be 

solved for. 

Starting from Maxwell’s equations in spatial Fourier domain with the ansatz 

indicated above we obtain 

ª ∙ + = 0       ª × ! = J;), 

ª ∙ , = 0       ª × , = −J+ 

Here, we have dropped for simplicity the J in the subscript. Now we follow the usual 

derivation for the wave equation  

−[ª × (ª × !)] =
J.

\).
1
9)
+ 

−ª(ª ∙ !) + ªh! =
J.

\).
1
9)
+ 

In the principle coordinate system where we have 

«4 = 9)94o4  

it follows in component notation that 

−∫4~ ∫DoD
E

D:*
+ ∫ho4 =

J.

\).
94o4  

…
J.

\).
94 − ∫h o4 = −∫4~ ∫DoD

E

D:*
 

Please note in the special case of an isotropic material the right hand side is equal to 

zero and we restore the governing equation for the eigenmodes in the isotropic 

space. This equation above is an eigenvalue equation and to solve it we have to solve 

the following characteristic equation 
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⎣
⎢
⎢
⎢
⎢
⎢
⎡J

.

\).
9* − ∫.. − ∫E. ∫*∫. ∫*∫E

∫.∫*
J.

\).
9. − ∫*. − ∫E. ∫.∫E

∫E∫* ∫E∫.
J.

\).
9E − ∫*. − ∫..⎦

⎥
⎥
⎥
⎥
⎥
⎤

º
o*
o.
oE
Ω = º

0
0
0
Ω 

The only meaningful solution we have if the determinant of this linear system is zero. 

Therefore, from the analysis of det[…]=0 we can obtain the dispersion relation of 

J = J(∫) for a given ratio of ∫4/∫.  

However, there is a simpler way to obtain this where we start from  

…
J.

\).
94 − ∫h o4 = −∫4~ ∫DoD

E

D:*
 

o4 = −
∫4

ØJ
.

\).
94 − ∫h∞

~ ∫DoD
E

D:*
 

Now, multiplication with ∫4  and summation over S, and eventually a substitution 

between S and M on the left hand side and we obtain 

~ ∫DoD
E

D:*
= −~

∫4.

ØJ
.

\).
94 − ∫h∞

E

4:*
~ ∫DoD

E

D:*
 

By exploiting the fact that the divergence of the electric field is not vanishing, i.e. 

456	! = ∑ ∫DoDE
D:* ≠ 0 it follows that 

~
∫4.

Ø∫h − J.

\).
94∞

E

4:*
= 1 

is the preliminary dispersion relation. In combination with  

º
∫*
∫.
∫E
Ω = ∫(J)º

æ*
æ.
æE
Ω =

J
\)
≈(J)º

æ*
æ.
æE
Ω 

 

~
∫4.

Ø∫h − J.

\).
94(J)∞

E

4:*
= 1 →~

æ4.

Ø1 − 94
≈.(J)∞

E

4:*
= 1 

~
æ4.

(≈.(J) − 94(J))
E

4:*
=

1
≈.(J)	
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This is the final form of the dispersion relation. Now the actual action is such that for 

a given crystal characterized by its permittivity tensor and an indication on the 

directions in terms of æ* and æ. (æE would be redundant since the sum of the square 

must be unity), we can calculate with the equation above the effective index the 

normal mode will experience to be ≈(J, æ*, æ.).  

However, please take care that as soon as pathological cases emerge, e.g. those for 

which 456	! = 0 in e.g. cubical crystals, it is required to return to the explicit 

expression and work with it 

This is after all a quadratic equation in ≈. since the terms with ≈¢ cancel out. This 

equation has two solutions ≈ù and ≈û and with this also , ∫ù,û =
5

,!
	≈ù,û. 

The normal modes have a polarization in the electric displacement for which they 

are perpendicular on each other. 

In the special case of a propagation direction along one of the principal axes, as 

previously discussed, for which æE = 1 it follows that 

(≈. − 9*)(≈. − 9.)≈. = (≈. − 9*)(≈. − 9.)(≈. − 9E) 

Multiplying this at first out and removing all the terms that depend on the six power 

of the index and recollecting the terms leads to 

(≈. − 9*)(≈. − 9.)9E = 0 

which has as solutions 

≈ù. = 9*					and					≈û. = 9. 

This corresponds just to the solutions presented above while considering the 

propagation along one of the principal axes.  

Eventually we can also compute in a very last step the fields of the normal modes. 

From above we know that 

…
J.

\).
94 − ∫h o4 = −∫4~ ∫DoD

E

D:*
 

æ*.(≈. − 9.)(≈. − 9E)≈. + æ..(≈. − 9*)(≈. − 9E)≈. + æE.(≈. − 9*)(≈. − 9.)≈.

= (≈. − 9*)(≈. − 9.)(≈. − 9E) 
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o4 = −
∫4

ØJ
.

\).
94 − ∫h∞

~ ∫DoD
E

D:*
 

where the sum is independent on the index S. Therefore it follows that ∑ ∫DoDE
D:* =

\$≈¶% and we can write down the ratio of the amplitudes as 

o*:o.:oE =
∫*

ØJ
.

\).
9* − ∫h∞

:
∫.

ØJ
.

\).
9. − ∫h∞

:
∫E

ØJ
.

\).
9E − ∫h∞

 

In combination with «4 = 9)94o4  we obtain 

«*:«.:«E =
9*∫*

ØJ
.

\).
9* − ∫h∞

:
9.∫.

ØJ
.

\).
9. − ∫h∞

:
9E∫E

ØJ
.

\).
9E − ∫h∞

 

As we can see that the field components are all real values, there is no phase 

difference between the different components, which necessarily leads to a linear 

polarization for the normal modes. 

The last thing we can prove is the orthogonality of the modes +(ù) and +(û) using 

the scalar product between the electric displacement field. Please note, the electric 

field won’t be perpendicular on each other. 

+(ù) ∙ +(û)~~
94.∫ù∫ûæ4.

Ø∫ù. −
J.

\).
94∞ Ø∫û. −

J.

\).
94∞

E

4:*
 

=
\).

J.

∫ù∫û
(∫û. − ∫ù.)

⎣
⎢
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4:*
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\).
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Now the terms in the sum are vanishing as can be seen while writing the dispersion 

relation as 

1 =~
∫ù,û. æ4.

Ø∫ù,û. − J.

\).
94(J)∞

=
E

4:*
~

Ø∫ù,û. − J.

\).
94(J) +

J.

\).
94(J)∞æ4.

Ø∫ù,û. − J.

\).
94(J)∞

E

4:*

= 1 +
J.

\).
~

94æ4.

Ø∫ù,û. − J.

\).
94∞

E

4:*
 

Therefore, the eigenmodes are orthogonal. 
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3.4.2.3 Geometrical interpretation II: normal surfaces 
In addition to the considerations above we can also plot the index of the two modes 

as surfaces in the space spanned by the components of the wave vector ∫4. This is 

providing us a centro-symmetric two-layer surface. Please note, normal surfaces are 

often called iso-frequency surfaces or just iso-surfaces. Eventually they display the 

functional dependency of the admissible directions (or elements of the k-vectors) for 

a given frequency. 

 
 

The cross sections with the principal axes are either circles or ellipses. 

Biaxial: the two surfaces intersect in four different points. The connecting 

lines between the two points are the two optical axes. Please note, 

the optical axis of a crystal is the direction in which the wave does not 

suffer from any birefringence. 

Uniaxial: It’s a body of revolution made from an ellipse and a sphere. There are 

two intersection points at the poles. The connecting line equally 

provides information on the optical axes. If 9* = 9. = 90' and 9E = 9!. 
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biaxial: 4 points with n n a b  Î connecting lines define two optical axes 

uniaxial: 2 points with n n a b  in the poles Î connecting line defines the 
optical axis (for 1 2H  H  Hor , 3H  He  the z-axis is the optical axis) 

isotrop: sphere 
How to read the figure: 

� fix propagation direction ( 1 2,u u )  o  intersection with surfaces 
� distances from origin to intersections with surfaces correspond to 

refractive indices of normal modes 
� definition of optical axis  o   n n a b  

Summary: there are two geometrical constructions:  
A) index ellipsoid (visualization of dielectric tensor) 

� fix propagation direction  z   index ellipse  z   half lengths of principal 
axes give  ,n na b  (refractive indices of the normal modes) 

� optical axis o index ellipse is a circle 
� for uniaxial crystals the optical axis coincides with one principal axis 

B) normal surfaces (visualization of dispersion relation) 
� fix propagation direction  z   intersection with surfaces 
z  distances from origin give ,n na b  

� optical axis connects points with n n a b  
Conclusion: 
In anisotropic media and for a given propagation direction we find two normal 
modes, which are linearly polarized monochromatic plane waves with two 
different phase velocities c na , c nb and two orthogonal polarization directions 
( ) ( ),D D ba . 

biaxial uniaxial

isotrop 

optical axis optical axis
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 Special case: uniaxial crystals 6.4.4
Let us now treat the special (simpler) case of uniaxial crystals. In biaxial 
crystals we do not find any other effects, just the description is more 
complicated. The main advantage of uniaxial crystals is that we have 
rotational symmetry in, e.g., x,y-direction and therefore all three-dimensional 
graphs (index-ellipsoid, normal surfaces) can be reduced to two dimensions, 
and we can sketch them more easily. As we have seen before, uniaxial 
crystals have trigonal, tetragonal, or hexagonal symmetry. Let us assume 
(without loss of generality) that the index ellipsoid is rotational symmetric 
around the z-axis, and we have 

 1 2 3,H  H  H H  Hor e  
which we call ordinary and extraordinary refractive indices. 
Then, we expect two normal modes: 
A) ordinary wave  Î  n   independent of propagation direction 
B) extraordinary wave Î  n   depends on propagation direction 
The z-axis is, according to definition, the optical axis with a bn n   

Î The ordinary wave ( )orD is polarized perpendicular to the z-axis and the k-
vector. 

Î The extraordinary wave ( )eD  is polarized perpendicular to the k-vector 
and ( )orD . 

Let us now derive the dispersion relation: From above we know the implicit 
form 

 Î 22

2 1i

ii nn
u

 
ª º¬ ¼H�

¦  

For uniaxial crystals this leads to 
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A) ordinary wave: independent of direction 
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B) extraordinary wave (derivation in exercise): dependent on direction 
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Hence for a given direction iu  one gets the two refractive indexes ,n na b . 
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The subscripts or and e stands for ordinary and extraordinary optical 

axes. 

cubic: The structure is isotropic and the two interfaces are identical 

How the figures need to be understood? 

At first you need to fix the directions æ* and æ.. Then you have to identify the 

intersections with the surfaces. The distance between the center of the coordinate 

system and the intersections provides you the refractive indices of the normal 

modes. Only in the special case that you are in the optical axes, the two possible 

indices are identical ≈ù = ≈û.  

Taking all together you may have access now to two different geometrical 

interpretations: 

(a) Index ellipsoid 

-Direction fixed ® identifying index ellipse ® semi-axes provide ≈ù 

and ≈û , being the indices, which are experienced by the normal 

modes 

(b) Normal surfaces 

-Direction fixed ® cross section to the normal surfaces ® distance to 

the center provide ≈ù  and ≈û , optical axis is the connecting line 

between the center and the cross section of the two branches 

 

In a nutshell, in an anisotropic material there exist two normal modes. These normal 

modes are linearly polarized plane monochromatic waves. They have two different 

phase velocities, given by ,!
qQ,R

 and two perpendicular polarization direction. All you 

need to provide is information on the material and the direction of propagation. 

3.4.3 Uniaxial crystals 
Uniaxial crystals have as a crystal structure to be either trigonal, tetragonal, or 

hexagonal. Their index ellipsoid is rotational symmetric around the À-axes and they 

are characterized by an ordinary and an extraordinary index that are derived from 

9* = 9. = 90'					and						9E = 9! 

The normal modes, in general, do not see the associated indices directly. 

There are two different normal modes 
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a) Ordinary waves  ® index is independent on the direction 

® «(0')	polarized perpendicular to the À-axis and to   

the wave vector 

b) Extraordinary waves ® index is dependent on the direction 

® polarized perpendicular to the wave vector and 

within the plane spanned by the wave vector and 

the rotational axis, «(z)	is perpendicular to «(£§)	 

According to our definitions the z-axes is the optical axis with ≈ù = ≈û. 

 
 

Now how does the dispersion relation looks like for such material? The best starting 

point will be the explicit solution, which we had before. 

æ*.(≈. − 90')(≈. − 9!)≈. + æ..(≈. − 90')(≈. − 9!)≈. + æE.(≈. − 90').≈.

= (≈. − 90').(≈. − 9!) 

(≈. − 90') ¥(æ*. + æ..)(≈. − 9!) + æE.(≈. − 90') −
(≈. − 9!)(≈. − 90')

≈. µ = 0 

Obviously there are two solutions. 

1. Ordinary wave 

238 

o  a priori nicht der Index, den die Welle sieht 

 

2 Normalmoden:  

 

a) ordentliche Welle  o   n   unabhängig von Richtung 

b) außerordentliche Welle  o   n   abhängig von Richtung 

z  -Achse o optische Achse mit  .n n a b    

o ordentliche Welle o  senkrecht zur Rotationsachse und zum  k  -Vektor 

polarisiert 

o  außerordentliche Welle o  senkrecht zum  k  -Vektor polarisiert und liegt 

in der Ebene  k  -Vektor – Rotationsachse 

 
 

besser auf 
den Achsen 

i in o H  

p
✏ork0

p
✏ork0

p
✏ork0

p
✏ek0

≈ù. = 90' 			→ 		 ∫ù. =
J.

\).
90' =

J.

\).
	≈ù. 			 
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2. Extraordinary wave 

(æ*. + æ..)(≈û. − 9!) + æE.(≈û. − 90') =
(≈û. − 9!)(≈û. − 90')

≈.  

 

≈û.(æ*. + æ.. + æE.) − ≈û. − (æ*. + æ..)9! − æE.90' + 9! + 90' −
9!90'
≈û.

= 0 

9!(1 − æ*. − æ..) + 90'(1 − æE.) −
IVIWX

qR
" = 0 

Now on the base of that equation we can calculate ≈ù and ≈û for a given illumination 

direction. 

Geometrical representation of the normal surfaces is straightforward 

1. Ordinary wave 

∫ù. = ∫*. + ∫.. + ∫E. = ∫).90' 

2. Extraordinary wave 

1
9!
(∫*. + ∫..)

∫).
+

1
90'

∫E.

∫).
= 1 

This is the equation for a rotational symmetric ellipsoid. For a simplification of the 

treatment but by no means as a restriction, we would like to assume in the following 

that the propagation takes place in the É − À-plane, suggesting that æ* = 0. Please 

note that the size of the ellipsoid changes with frequency. The isosurfaces then look 

like 

(æ*. + æ..)
9!(J)

+
æE.

90'(J)
−

1
≈û.

= 0 
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What eventually can be said about the fields? From the general discussion as 

outlined above we know that 

«*:«.:«E =
90'∫*

ØJ
.

\).
90' − ∫h∞

:
90'∫.

ØJ
.

\).
90' − ∫h∞

:
9!∫E

ØJ
.

\).
9! − ∫h∞

 

For the extraordinary wave the denominators are finite and since we have ∫* = 0, 

we also have «*
(z) = 0. Therefore, the field is polarized in the y-z-plane. Since 

moreover the ordinary wave needs to be polarized perpendicular to the 

extraordinary wave, the ordinary wave must be polarized in the x-direction. 

Moreover, independent from that it is also known that the ordinary field is polarized 

perpendicular to the plane that is given by the optical axis and the wave vector. In 

the example shown below the optical axis is the z-direction. Hence, the ordinary 

wave must be polarized in the x-direction. 

240 

Geometrische Darstellung als Normalenflächen  

 
2 2 2 2

0ik k n u i  

  

1. ordentlich  
2 2 2 2 2

1 2 3 0k k k k k � �  Ha or  

  

2. außerordentlich  

� �
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� �

2 2 2
1 2 3
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1 1 1
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o   Rotationsellipsoid o o.B.d.A. Ausbreitung in  y z� �  Ebene  o    

0u  1   o Größe der Ellipse ändert sich mit der Frequenz  

   

besser auf 
den Achsen 

i in o H  

p
✏ork0

p
✏ork0

p
✏ork0

p
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In this case we can also perform a simple calculation of the effective index ≈.(Θ) of 

the extraordinary wave depending on the angle of propagation in the y-z-plane. In 

general it holds that 

(æ*. + æ..)
9!(J)

+
æE.

90'(J)
−

1
≈û.(J)

= 0 

For the special situation mentioned above that æ* = 0 it simplifies to 

æ..

9!(J)
+

æE.

90'(J)
−

1
≈û.(J)

= 0 

æ. = sinΘ 					and						æE = cosΘ 
Ñ•1"¶

IV(5)
+ &0Ñ"¶

IWX(5)
− *

qR
"(5,¶)

= 0 
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o  a priori nicht der Index, den die Welle sieht 

 

2 Normalmoden:  

 

a) ordentliche Welle  o   n   unabhängig von Richtung 

b) außerordentliche Welle  o   n   abhängig von Richtung 

z  -Achse o optische Achse mit  .n n a b    

o ordentliche Welle o  senkrecht zur Rotationsachse und zum  k  -Vektor 

polarisiert 

o  außerordentliche Welle o  senkrecht zum  k  -Vektor polarisiert und liegt 

in der Ebene  k  -Vektor – Rotationsachse 

 
 

besser auf 
den Achsen 

i in o H  

p
✏ork0

p
✏ork0

p
✏ork0

p
✏ek0

≈û.(J,Θ) =
9!(J)90'(J)

90'(J) sin. Θ + 9!(J) cos. Θ
 



	 64	

 
Finally we would like to mention that a classification is usually used for uniaxial 

optical materials. For 

90'(J) > 9!(J) 				→ 					negatively	uniaxal 

90'(J) < 9!(J) 				→ 					positively	uniaxal 

3.5 Derived quantities from the dispersion relation 
In a final note we would like to outline a few important parameters that can be 

derived from the dispersion relation and which describe the evolution of Gaussian 

beams in materials. It is specified here for a uniaxial material but the general 

concepts are applicable to any other material as well. This makes it such powerful. 

The concept can be also applied to metamaterials, photonic crystals, coupled 

waveguides etc.; all systems for which a dispersion relation needs to be known. 

The first important quantity is the inclination coefficient. This eventually is given by 

the tangent of the iso-frequency surface; being the normal surface for a particular 

wave 

û(∫.)) =
3∫E(J, ∫.)

3∫.
ƒ
l"
!
 

Here we assume that the principal propagation direction is along the z-axis and the 

propagation takes place in the y-z-plane. The inclination coefficient is related to the 

transverse shift a Gaussian beam experiences during propagation. Since there is a 

difference between the direction the energy transport takes place (so basically 

direction of the time averaged Poynting vector) and the normal direction of the 

fronts of constant phase, a Gaussian beam will not propagate in the direction of the 
242 
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wave vector. Instead, it will propagate to the direction normal to the negative 

tangent.  

−
3∫.

3∫E(J, ∫.)
√
l"
!
=
∫E
∫.)

9!(J)
90'(J)

= tanÕ
9!(J)
90'(J)

= tanΘ 

  
 

The direction of a Gaussian beam is perpendicular to the surface and agrees with the 

direction of the Poynting vector. For an extraordinary wave this no longer coincides 

with the direction of the wave vector. This also suggests that the direction of the 

propagation of ordinary and extraordinary wave no longer agrees; a phenomena 

that is called as spatial walk off. This walk off needs to be carefully considered in the 

applications of birefringent effects, e.g., in the context of nonlinear optics. 

From the inclination coefficient the refraction coefficient can be derived that 

expresses the way refraction takes place at the interface between two media 

characterized by a given inclination coefficient 

m(∫.)) =
û*(∫.))
û.(∫.))

 

The sign of R distinguishes between normal (R > 0) and anomalous (negative) 

refraction (R<0).  
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B) Bündelrichtung l Normalenfläche 
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o Richtung des Gaußschen Bündels senkrecht auf der Normalenfläche 

Zusammenfassung: 

x  Die Strahlachse eines Gauß-Bündels stimmt mit der Richtung 

des Poyntingvektors überein 

o senkrecht zu Normalenfläche. 
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o  a priori nicht der Index, den die Welle sieht 
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b) außerordentliche Welle  o   n   abhängig von Richtung 
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in der Ebene  k  -Vektor – Rotationsachse 
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A further important parameter is the diffraction coefficient. It expresses how strong 

the diffractive spread of a Gaussian beam will be while propagating through a 

material. 

«(∫.)) =

3.∫E(J, ∫.)
3∫..

+1 + …3∫E(J, ∫.)3∫.
√
l"
!
 
.

,
E/.
-

-

l"
!

 

 

The diffraction coefficient evaluated at ∫.) is a measure for the spreading or focusing 

of the beam along its mean propagation direction. If « < 0 diffraction is normal, 

similar to an ordinary homogeneous medium, and if « > 0  it is anomalous, 

observable, for instance, in waveguide arrays and photonic crystals.  

Please note, there is a strong analogy to the propagation of pulses in temporal 

domain as earlier discussed. There, the dispersion relation was expanded in 

temporal frequency space to evaluate the speed of propagation of the wave package 

(first derivative) and the dispersive spread (second derivative). This is full analogy to 

the parameters discussed here; just by replacing the temporal frequency with the 

spatial frequency.  

The most important thing to remember is that whenever the dispersion relation is 

known, the light propagation in the medium can be theoretically understood.  
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4. Coherence optics 

4.1. Basics 
The theory of optical coherence is a part of the field of statistical optics. These fields 

of science have been pioneered by contributions from Max Born and Emil Wolf in 

the fifties of the last century. It is since then of major importance and has been 

further developed. Current research interest, e.g. deal with the proper description 

partially coherent light in opto-electronic devices such as a solar cell. 

Subject of concern: Properties of “random” light, light that has been experiencing or 

was exposed to fluctuations of the properties of the source or to fluctuations of the 

optical properties of the medium through which the light has been propagating. 

Referential examples: 

• Natural light as emitted from thermal sources such as an incandescent lamp 

or the sun, sources where many independent atoms contribute to the 

emission. They all emit light at slight different frequencies and phases. Light 

emitted from such sources cannot be described by an infinite wave train that 

is characterized by a singular frequency. 

• Light that is reflected at randomly rough surfaces. Here, the frequency is 

preserved but the phase of an incident planar wave suffers from fluctuations. 

Properties of these light sources are discussed in the context of coherence theory. 

Assumptions: scalar approximation æ(#, %) 

Thus far we have only considered fields that an be written as: 

æ(#, %) = Ã(#, J)v-456 + \. \. 

with, for example, 

Ã(#, J) = v4j(5)∙? 

Such light field is entirely determined in all its properties; it is what is called coherent 

light. Please note, such ideal time-harmonic field is required to be existent forever; it 

cannot therefore exist in reality. Only if the frequencies are confined to a narrow 

interval the light can be considered as quasi-monochromatic. How narrow it needs 

to be has to be answered in the context of a specific optical device. 
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What will be considered now is a field that is a random variable; but it shall still obey 

the wave equation. This type of light can be visualized either in time or in a spatial 

domain (please note in time or space we plot here only the real part of the complex 

variables or actually the wave front, the field itself is complex and has a real and 

imaginary part): 

 
Light in general can be categorized according to their degree of phase correlation: 

• Coherent light 

• Partially coherent light 

• Incoherent light 

Please note, the problem we will tackle is independent from the problem of treating 

a polychromatic source. There, due to superposition principle, the response of an 

optical system to each frequency needs to be calculated and afterwards summed up. 

Unfortunately, in most cases we do not know the precise frequencies, the 

amplitudes and the phases of the harmonic components of the field emitted by a 

real source. The only information we have available is a statistical model for the 

distribution of frequencies, amplitudes and phases. These models carry over their 

statistical features into the field emitted by the source elsewhere in space, e.g. in the 

image plane of an objective lens of a microscope. Fortunately, the statistical models 

turn out to be sufficient to predict the outcome of most optical experiments. These 

statistical models do not need to be complete in a sense that all properties are 

perfectly reflected, in most cases we will rely here on second-order averages called 

coherence functions that are entirely adequate.  

The theory of optical coherence eventually shall allow us to describe the deviations 

of partially coherent waves from perfectly coherent waves. In the following we will 

354 

8. Statistische Optik - Kohärenztheorie 

8.1. Grundlagen 
wesentliche Beiträge durch Max Born und Emil Wolf (50iger Jahre) 

Gegenstand: Eigenschaften von `zufälligem' Licht  o   Fluktuationen der 

Quelle oder der optischen Eigenschaften des Mediums, das vom Licht 

passiert wird. 

x natürliches Licht (Wärmestrahler), viele unabhängige Atome 

(unterschiedliches  Z   und Phase) 

x Streuung an rauhen Oberflächen 

 o   Kohärenztheorie 

 

Annahmen: skalare Näherung  ( , ),u tr   bisher:  

� �( , ) ( , )exp . .u t U t c c Z � Z �r r i   z.B.:  � �( , ) expU Z  Z oª º¬ ¼r k ri   Phasen 

vollständig determiniert  o   kohärentes Licht 

 

Feld o Zufallsgröße o  genügt Wellengleichung.  
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always distinguish between time coherence, spatial coherence, and mutual 

coherence. 

4.2. Statistical properties of light 

4.2.1 Definitions 
We assume in the following that æ(#, %) is a complex analytical signal 

It corresponds to an arbitrary physical component of a non-monochromatic field at 

position # and time %. 

a) Intensity 

≠(#, %) = 〈|æ(#, %)|.〉z 

|æ(#, %)| is a randomly fluctuating intensity and 〈⋯ 〉z  describes here the ensemble 

average. This requires a sufficient large number of measurements on a nominally 

identically prepared system. 

Example I: stationary statistical light source: light valve driven by a constant current 

 

 
≠(#, %) = ≠(#) 

Now an important statement is given that will be valid for the systems we consider: 

The ergodic hypothesis that applies says that, broadly speaking, the system has the 

same behavior averaged over time as averaged over the different individual 

implementations of the same system. Time and ensemble average are the same. 
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a) statistisch stationär - Lampe mit konstantem Strom 

 

 

( , ) ( ).I t I r r  

Ergodenhypothese o Ensemblemittelwert kann durch Zeitmittelwert ersetzt 

werden.  

  
e t

 

 

21( ) lim ( , )
2

T

T
T

I u t dt
T �

of

 ³r r  

 

b) statistisch nichtstationär  o   Lampe mit veränderlichem Strom ( , )I to r   

 

 

æ(#, %) = s Ã(#, J)v-456LJ
7

)

 

æ�(#, %) = ℜ ¥s Ã(#,J)v-456LJ
7

)
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〈⋯ 〉z = 〈⋯ 〉6 = 〈⋯ 〉 

From the ergodic hypothesis it follows that the intensity will be 

In detail, we can derive the constant intensity as described using the idea that from a 

source the light is emitted by individual atoms that emit light of a specific frequency 

and with an arbitrary phase. We can technically write the field as a superposition of 

N monochromatic waves with equal amplitude, random phases and frequencies 

randomly chosen within an interval ∆J centered around some central frequency.  

æ(%) = £~ v4(-546fú4)
ß

q:*
 

The average over a time interval of length 2• of the intensity is 

≠ = lim
G→7

1
2•s

|æ(%)|.L%
G

-G

 

≠ = lim
G→7

£.

2•s √~ v4(-546fú4)
ß

q:*
√
.

L%
G

-G

 

≠ = lim
G→7

£.

2•s ~ ~ v4Ü(5,-54)6fú4-ú,á
ß

e:*

ß

q:*
L%

G

-G

 

If the integration time is long enough when compared to the period of a beat 

associated with the frequency difference of Je − Jq, the oscillating parts of the 

integral tend to cancel each other and the inter terms that persists are those with 

Je = Jq. The time average intensity is then constant and proportional to £. and to 

x. 

Example II: non-stationary statistical light source: light valve driven by a time 

dependent current ® ≠(#, %) 
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a) statistisch stationär - Lampe mit konstantem Strom 
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T

T
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b) statistisch nichtstationär  o   Lampe mit veränderlichem Strom ( , )I to r   
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b) Temporal coherence and spectra 

We will assume in the following stationary statistical process ® ≠(#) and we only 

consider the intensity at a fixed point in space ® ≠(#) = ≠. 

The measure for the correlation of the field at æ(%) and æ(% + p) is the auto-

correlation function “(p) 

The function “(p) is called the temporal coherence function. Since it is defined with 

respect to it-self, it is also called a self-coherence function. 

The temporal width of the function “(p)  tells us something how quickly the 

envelope of the function æ(%) changes as a function of time. The function æ(%) only 

changes smoothly within a time p®  called the coherence time. Beyond this time the 

function is rough, i.e.	“(p) = 0 for p > p® . Of course, this is not meant in a strict 

sense but shall only qualitatively express the functionality. 

 
In particular it holds that  
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b) zeitliche Kohärenz und Spektrum 
 
Annahmen: statistisch stationär  ( )Io r   und am festen Ort  o    ( ) .I I r  

Maß für Korrelation von  ( )u t   und  ( )u t � W  o  Autokorrelationsfunktion ( )G W  

 

1( ) ( ) ( ) lim ( ) ( ) .
2

T

T
T

G u t u t u t u t dt
T


 


of
�

W  � W  � W³  

 

  ( )G W   ist die zeitliche Kohärenzfunktion. 

 

Zeitskalen:  ( )u t   schwach veränderlich innerhalb von  tK   

(Korrelationszeit), darüber hinaus `rauh', d.h.,  ( ) 0G W    für  W !  .tK  

 

Speziell gilt:  

(0) .G I  

“(p) = 〈æ∗(%)æ(% + p)〉 = lim
G→7

1
2•s æ∗(%)æ(% + p)L%

G

-G

 

“(0) = ≠ 
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Now the function “(p)  unfortunately contains two different information: 

information on the coherence but also on the intensity. Both effects should be 

separated which asks to introduce a normalized quantity. 

For that purpose we introduce the complex degree of temporal coherence u(p). 

Please note, we will introduce later higher order correlation functions (related to the 

intensity). Therefore this degree of coherence is often called a first-order correlation 

function abbreviated with ‘(1)’ in the superscript. This is omitted here as long as we 

face no possible confusion. The function is defined as 

The function is bound between zero and one, i.e. 0 ≤ |u(p)| ≤ 1. 

Example I: perfect deterministic light, i.e. coherent light 

æ(%) = £v-45!6 

u(p) =
1
2• ∫ |£|.v-45!JL%G

-G

1
2• ∫ |£|.L%G

-G

= v-45!J 			→ 				 |u(p)| = 1 

Example II: general case 

Allows a more rigid definition of the coherence time: 

|u(p)| is a monotonously decaying function. This allows to define the coherence 

time as the width at which the function |u(p)| has been decaying to |u(p,)| = 1 vâ . 

Please note, other definitions also consider a decay to one half. 

p, = s |u(p)|.Lp
7

-7

 

|u(p)| = 1							 ↷ 					 p, → ∞			 

Example: u(p) = v-
|Y|
Z 	↷ 	 p, = 2∫ v-.

|Y|
ZLp7

)
= £(1 − 0) = £ 

 
The coherence length can be calculated from the coherence time by /, = \p,. 
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Kohärenzlänge:  l c Wc c     

relevante Längen in optischen Systemen  d    lc    o   Kohärenz. 

 

u(p) =
“(p)
“(0) =

〈æ∗(%)æ(% + p)〉
〈æ∗(%)æ(%)〉  
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If all the relevant length scales of the optical system are smaller (or ideally much 

smaller) than the coherence length, we may consider the system as coherent. 

c) The theorem of Wiener-Khinchin 

The Wiener-Khinchin-theorem is important since it expresses the dependency 

between the spectrum and the temporal coherence of a source, a wave field. 

 

Theorem: The Fourier transform of the autocorrelation function of a signal is 

identical with the magnitude square of the Fourier transform of the signal. The latter 

being the spectrum  

 

Here, the theorem establishes a relation between the temporal coherence function 

and the spectrum of the signal 

where the signal ”(J) is defined here as 

”(J) = |Ã(J)|. 

Proof: (please consider that in the following we will deal with finite times; since for 

stationary process an infinite time will lead to infinite energies which are difficult to 

handle) 

“(p) = 〈æ∗(%)æ(% + p)〉 = lim
G→7

1
2•s æ∗(%)æ(% + p)L%

G

-G

 

Now for a truncated Fourier transform this reads as 

ÃG(J) =
1
2Es æG(%)v456L%

7

-7

 

æG(%) = Næ(%) |%| ≤ •
0 otherwise 

æG(%) = s ÃG(J)v-456LJ
7

-7

 

“(p) = lim
G→7

1
2•s æG∗ (%)æG(% + p)L%

G

-G

 

“(p) = lim
G→7

1
2•s æG∗ (%) ¥s ÃG(#, J)v-45(6fJ)LJ

7

-7

µ L%
G

-G

 

“(p) = s ”(J)v-45JLJ
7

-7
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“(p) = lim
G→7

1
2•s s OæG∗ (%)v-456L%P

7

-7

ÃG(#, J)v-45JLJ
G

-G

 

= lim
G→7

1
2•s

|ÃG(J)|.v-45JLJ
G

-G

 

↷ ”(J) = lim
G→7

1
2•

|ÃG(J)|. 

”(J)LJ  is the spectral intensity between J  and J + LJ . Since the Fourier 

transform of the field does not contain negative frequencies, i.e. Ã(−J) = 0, it 

follows that 

Moreover, it holds that the coherence of a light source is given by the spectral 

intensity.  

 
It holds in general that the product between coherence time and the bandwidth is 

constant. The longer the coherence time the shorter the bandwidth and vice versa. 

p,∆J = const. 

where the spectral width is defined as 

∆J =
O∫ ”(J)LJ7

)
P
.

∫ ”.(J)LJ7

)

 

Therefore, spectral filters can be used to improve the coherence, but this is always 

accompanied by a loss of intensity. 
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x spektrale Filter verbessern Kohärenz o Intensität geht verloren 
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7
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A limiting example to be considered is a monochromatic wave. There,	∆J → 0 and 

we have maximized the temporal coherence, i.e. p, → ∞.  If ∆J ≪ J)  or p, ≫

%©O©6ze, we would speak of a quasi-monochromatic field that behaves as coherent 

light. 

d) Mutual coherence function (spatial and temporal coherence) 

The mutual coherence function “(#*, #., p) is given as the cross correlation function 

between the scalar field at two different spatial positions and at two different 

moments in time, i.e. between æ(#*, %*) and æ(#., %.) with  p = %. − %*. 

“(#*, #., p) = 〈æ∗(#*, %)æ(#., % + p)〉 

Then, the complex degree of the degree of mutual coherence is defined accordingly 

as 

The function is equally bound between 

0 ≤ |u(#*, #., p)| ≤ 1 

The complex degree of the degree of mutual coherence is a measure for the 

correlation of the field between (#*, %) and (#., % + p). 

Example: plane, monochromatic wave 

|u(#*, #., p)| = Êv4j(?9-?")-45JÊ = 1 

The function collapses to an expression 

(a) for temporal coherence if #* = #. 

(b) for spatial coherence for p = 0 

 

e) Mutual intensity – spatial coherence function 

This concerns the explicit details to the special case mentioned above with p = 0. 

“(#*, #., 0) = 〈æ∗(#*, %)æ(#., %)〉 = “(#*, #.) 

“(#*, #.) is called the mutual intensity. The normalized mutual intensity u(#*, #.) 

reads as 

u(#*, #., p) =
“(#*, #., p)

0≠(#*)≠(#.)
 

u(#*, #.) =
“(#*, #.)

0≠(#*)≠(#.)
 



	 76	

Comment:  

If the optical path difference in an optical system is smaller than the coherence 

length, spatial and temporal coherence can be separated from each other, and the 

light wave is temporally coherent; just as mentioned above, this is called quasi-

monochromatic light 

“(#*, #., p) = 	“(#*, #.)v-45!J = 	“(#*, #.)	“(p) 

Impact of an aperture on the area of coherence (spatial domain where the spatial 

degree of coherence dropped by 1/e) 

 
If the aperture images a spot that is smaller than the area of coherence, |u| = 1 and 

effectively the light is coherent. On the other hand, if the spatial resolution only 

allows to glimpse into an area that is larger than the are of coherence, |u| ≪ 1 and 

the light is effectively incoherent. A thermal source of radiation, for example, has a 

area of coherence that is in the order of »., so except in high resolution systems this 

light source will be perceived as incoherent.  

4.3. Interference of partially coherent light 

4.3.1. Interference at one point of two partially coherent waves 
In the notation introduce above we consider here two random fields æ*(#, %) and 

æ.(#, %). They have the intensity  

≠* = 〈|æ*(#, %)|.〉				and				≠. = 〈|æ.(#, %)|.〉 

at point # . They are characterized by the cross correlation function 
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Kohärenzgebiet: 

 

 

 

 

Wenn Apertur <Kohärenzgebiet  z    1g     o   Kohärenz 
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“*. = 〈æ*∗æ.〉 

and the respective normalized quantity, the mutual complex degree of coherence 

u*. =
〈æ*∗æ.〉
0≠*≠.

 

Please note here the difference between the quantities with and without subscript 

as used thus far. 

 The interference between both fields gives 

≠(#) = 〈|æ* + æ.|.〉 = 〈|æ*|.〉 + 〈|æ.|.〉 + 〈æ*∗æ.〉 + 〈æ*æ.∗〉 

= ≠* + ≠. + “*. + “*.∗ = ≠* + ≠. + 2ℜ(“*.) 

= ≠* + ≠. + 20≠*≠.ℜ(u*.) 

where 1 = argu*.. 

Now different cases can be discussed 

• |u*.| = 1  ® interference pattern visible just as for coherent light 

• |u*.| = 0  ® ≠ = ≠* + ≠. no interference just as for incoherent light 

• in general, 0 ≤ |u*.| ≤ 1 , interference pattern with some visibility or 

contrast according to 

for ≠* = ≠. this expression reduces to  

2 = |u*.| 

 4.3.2. Interference and temporal coherence 
In the following we consider a signal at the same spatial location but at two different 

times. 

æ* = æ(%) 			→ 			 ≠) = 〈|æ(%)|.〉 

æ. = æ(% + p) 			→ 			 ≠) = 〈|æ(% + p)|.〉 

It is the same but just at a different time. Therefore, time averaged they have the 

same intensity. With this we have 

u*. =
〈æ*∗æ.〉
≠)

=
〈æ∗(%)æ(% + p)〉

≠)
= u(p) 

≠(#) = ≠* + ≠. + 20≠*≠.|u*.| cos1 

 

2 =
≠eùm − ≠e4q
≠eùm + ≠e4q

= 2
0≠*≠.
≠* + ≠.

|u*.| 
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The interference pattern can be calculated according to 

≠(#) = ≠* + ≠. + 20≠*≠.ℜ(u*.) 

The same discussion as performed above applies. Depending on |u(p)| we can 

define a visibility 2 = |u(p)| and the cos1(p) only defines the spatial position of the 

interference pattern. We have perfect contrast (2 = 1) for p = 0 and a vanishing 

contrast (2 = 0) for p > p,. 

A measurement can be realized, e.g., with a Michelson or Mach-Zehnder 

interferometer. 

 

Here, p is defined as the path difference in the two arms, i.e. p = .(™"-™9)

,
. 

For quasi-monochromatic light (J) ≫ ∆J) 

æ(%) = „(%)v-45!6 

u(p) = uù(p)v-45!J = |uù(p)|v-4(5!J-úQ) 

uù(p) =
〈„∗(%)„(% + p)〉

|„(%)|.  

≠(p) = 2≠)˘1 + |uù(p)| cos�J)p − 1ù(p)Ä˙ 

Here the term |uù(p)| dictates the contrast, J)p the period of the interference 

fringes and 1(p) eventually describes the absolute position. 

 

We can take advantage of these interference phenomena in specific applications, 

e.g. here shown at the example of the Fourier-Transform spectroscopy. 

We know from before that 

≠ = s ”(J)LJ
7

)
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Realisierung  o   Michelson- oder Mach-Zehnder-Interferometer: 
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≠(p) = 2≠)˘1 + ℜ�u(p)Ä˙ = 2≠){1 + |u(p)| cos1(p)} 
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which necessarily requires that ”(J) is a real valued function which we defined 

before as the spectral intensity between J and J + LJ. Following the Wiener-

Kintchin theorem we have 

“(p) = u(p)≠) = s ”(J)v-45JLJ
7

)

 

≠(p) = 2≠) + 2≠)ℜ�u(p)Ä 

= 2s ”(J)LJ
7

)

+ 2ℜ…s ”(J)v-45JLJ
7

)

  

= 2s ”(J)LJ
7

)

+ 2…s ”(J) cosJp LJ
7

)

  

= 2s ”(J)[1 + cosJp]LJ
7

)

 

From these expressions we can see that we can measure ≠(p), making an inverse 

Fourier transform eventually and we can obtain the spectrum, FT-*[≠(p)] = ”(J). 

From this quantity we can also extract “(p). 

4.3.3. Interference and spatial coherence 
The classical example for the consideration to understand the concept is a Young 

interferometer. There, interference at a double slit or circular apertures can be 

observed. 

 
æ* = æ*(#, %) is the light emanating from aperture 1 and æ. = æ.(#, %) is the light 

emanating from aperture 2. The measurement of ≠(#, %) done with the following 

coordinates  

#* = (−„, 0,0)			and			#. = („, 0,0)			and			# = (ø, 0, L)			and			Θ ≈
2„
L 		 
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8.3.3. Interferenz und räumliche Kohärenz 
 
Young-Interferometer  o   Beugung am Doppelspalt 

 

 1 1( , )u u t r   - Licht von Loch '1',  2 2 ( , )u u t r   - Licht von Loch '2' 
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 �   4 |r r r  
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would provide in Fresnel approximation for the light from the first aperture 

æ*(#, %) = æ …#*, % −
|# − #*|

\  ≈ æ …#*, % −
L + (ø + „)./2L

\   

and for the second aperture 

æ.(#, %) = æ …#., % −
|# − #.|

\  ≈ æ …#., % −
L + (ø − „)./2L

\   

Furthermore we assume that ≠* ≈ ≠. ≈ ≠). It was already indicated before that 

≠ = 2≠){1 + |u*.| cos1} 

with  

u*. =
〈æ*∗æ.〉
≠)

=
〈æ∗(#*, %̅)æ(#., %̅ + p)〉

≠)
= u(#*, #., p) 

which is here the mutual complex degree of coherence. In this expression we have  

%̅ =
L + (ø + „)./2L

\  

p =
(ø + „).

2L\ −
(ø − „).

2L\ =
2„ø
L\ = Θ

ø
\ 

The degree of coherence can then be determined by measuring the intensity 

≠ = 2≠)˘1 + Êu�#*, #., p(ø)ÄÊ cos1(ø)˙ 

This is a general expression. If the field is temporally coherent (p < p,) this can be 

written using  

u(#*, #., p) = u(#*, #.)v-45!J 

≠ = 2≠) 71 + |u(#*, #.)| cos …J)Θ
ø
\ + 1(#*, #.) 8 

The period of the fringe pattern will be ød =
t

¶
, the visibility will be 2 = |u(#*, #.)| 

and the spatial position of the fringes will be given by 1(#*, #.). 

 
 

373 

 

 
 
8.3.4. Räumliche Kohärenz und Ausbreitung 
 
Annahme: zeitlich kohärentes Licht ( ),W � Wc  

� � � � � �1 2 1 2 0, , , expG G tW  � Zr r r r i  

Frage: Wie ändert sich räumliche Kohärenz bei Ausbreitung durch beliebiges, 

lineares System? 

( )u cri o  � �h r,r'  ( )u reo  

 

( ) ( , ) ( ) 'u h u
f

�f³r r r' r' dre i  

 z   Kohärenzfunktion am Ausgang 

� � � �'
1 2 1 1 2 2 1 2 1 2, ( , ) ( , ) , .G h h G

f 
 c c c c c

�f
 ³³r r r r r r r r dr dre i  

 

Intensität: 

x partielle Kohärenz am Eingang 

� � � �1 2 1 2 1 2( , ) ( , ) ,I h h G
f 
 c c c c c c

�f
 ³³r r r r r r r dr dre i  

Kohärenzfunktion am Eingang benötigt 


