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Do we consider spatial dispersion?

Nonlocal material response
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where the material response is described entirely by means of P = P(E,B) and M =

M(E,B). The equations for D and H are termed constitutive relations. This leads to

inhomogeneous Maxwell equations of the form

r⇥H(r, t) =
@D(r, t)

@t
+ Jext(r, t) (2.17)

and

r ·D(r, t) = ⇢ext(r, t). (2.18)

Together with the homogeneous equations (2.4) and the constitutive relations (2.16) they

build the complete set of field equations.

As already mentioned in the context of the multipole approach the definitions for D and

H (2.16) are not unique. In fact, the field equations are invariant under the transformation:

D0(r, t) = D(r, t) +r⇥Q(r, t), and H0(r, t) = H(r, t) +
@Q(r, t)

@t
(2.19)

with an arbitrary but di↵erentiable vector field Q(r, t). Hence, the fields P and M are not

unique, too. On one hand, the separation of the induced current becomes arbitrary and on

the other it is only meaningful, if physically motivated. The only relevant modification of

such a transformation concerns the boundary conditions, which have to be used. In fact,

that is the important advantage of such transformations. Exactly this type of transformation

will be used below to obtain simple boundary conditions.

For optical frequencies or more generally speaking for all non-magnetic materials, it is

neither possible nor necessary to perform a separation of the induced current into the po-

larization and the magnetization current. I.e., the overall response can be put in a single

induced current. We therefore rewrite the equations in frequency space as:

r⇥ E(r,!) = i!B(r,!),
1

µ0

r⇥B(r,!) = �i!E(r,!) + Jind(r,!) + Jext(r,!) (2.20)

"0r · E(r,!) = ⇢ind(r,!) + ⇢ext(r,!), r ·B(r,!) = 0, (2.21)

where the transition to frequency space is performed via Fourier transformation being defined

as:

E(r,!) =

Z 1

�1
E(r, t)e�i!t

dt. (2.22)

One formally defines

D(r,!) = "0E(r,!)�
Jind(r,!)

i!
, H(r,!) =

B(r,!)

µ0

. (2.23)

The overall response is driven by the electric field [108,109] and we can write formally:

J(r,!) =

Z

V

R(r, r0,!)E(r0,!)dV 0 (2.24)

Taylor expansion
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exist, which require the introduction of a non-local response. At first, and even if there is no

interaction between neighboring unit cells, if the response depends on spatial derivatives of

the field and, physically speaking, higher order multipole moments may become important.

And at second, if the response is depending on the environment, whereas the single molecules

or metaatoms might have only electric and magnetic dipole moments, as it is e.g. for periodic

structure with lattice periods that are not negligibly small compared to the wavelength [71].

In any case the non-locality is necessarily related to the ratio of wavelength to unit cell size

and averaging volume, respectively.

Returning to the general form of the response in Eq. (2.25) we perform a Fourier trans-

formation with respect to space and end up with:

J(k,!) = R̃(k,!)E(k,!) (2.26)

where the tensor R̃(k,!) is the spatial Fourier transform of R(r,!). In fact, we arrived here

at the most general response of a homogeneous medium with

D(k,!) = "0E(k,!)�
1

i!
R̃(k,!)E(k,!) = "0"̃(k,!)E(k,!), (2.27)

where the tilde indicates the tensorial nature of the permittivity "̃(k,!). The Maxwell

equations in Fourier space (k,!) are then given by:

k⇥ E(k,!) = !B(k,!), k ·D(k,!) = 0, (2.28)

k⇥H(k,!) = �!D(k,!), k ·B(k,!) = 0. (2.29)

Hence, we can write for the wave equation for E:

k⇥ k⇥ E(k,!)� !
2

c2
"̃(k,!)E(k,!) = 0. (2.30)

The solution to this eigenvalue equation results in a relation !(k) - the dispersion relation

of plane waves.

This form is as appealing as impracticable, since only light propagation in a homogeneous,

infinitely extended medium can be described, whereas nothing can be said about the bound-

aries. To handle the interface problem, it is necessary to return to real space via Fourier

transformation and to derive adequate transition conditions for the fields at the interfaces.

To perform the transition to real space without the convolution integral, the response R̃(k,!)

is expanded into a three-dimensional Taylor series at k = 0. While retaining expansion terms

of the second order it reads as

R̃(k,!) ⇡ R̃ij(k = 0,!) +
@R̃ij(k,!)

@kk

�����
k=0

kk +
1

2

@R̃ij(k,!)

@kk@kl

�����
k=0

kkkl (2.31)2. Setting the stage - deriving the constitutive relations 18

= �i![aij(!) + aijk(!)kk + aijkl(!)kkkl], (2.32)

where the factor �i! was separated for convenience and summation over repeating indices

is assumed.

Here, some remarks are necessary. At first, for arbitrary small particles the response is

local and depends on the field at the position r only. Its response is entirely expressed by

the first term of the expansion. As soon as the variation of the field across the averaging

volume is no longer negligible, the response depends in a slightly refined approximation on

the wavevector k, too. This is represented by the second term of the sum in Eq. 2.32.

For particles that are even larger compared to the wavelength higher terms of the series

may contribute in general as well. But generally the particles are small compared to the

wavelength, since the averaging volume has to be small to allow for the homogenization.

Therefore, the expansion is meaningful at k = 0 only. Indeed the truncation of the series

corresponds to a spatial filtering analogous to the truncation of the multipole expansion as

we will see later on when comparing both approaches.

At second, certain relations are obtained for the coe�cients. Due to the interchangeability

of the spatial derivatives for continuously di↵erentiable functions, the indices k, l, ... indi-

cating spatial derivatives can be interchanged arbitrarily. Also, from the Casimir-Onsager-

relations for reciprocal media we have aij = aji, aijk = �ajik and aijkl = ajikl and analogously

for higher order terms [94].

The approximate expression for R̃(k,!) can now be reinserted into the current (2.26):

Ji(k,!) ⇡ �i! [aij(!)Ej(k,!) + aijk(!)kkEj(k,!) + aijkl(!)kjkkEj(k,!)] . (2.33)

Via inverse Fourier-transformation into real space we have:

Ji(r,!) ⇡ �i! [aij(!)Ej(r,!) + aijk(!)@kEj(r,!) + aijkl(!)@l@kEj(r,!)] . (2.34)

Therefore, we get for D:

Di(r,!) = ["0�ij + aij(!)]Ej(r,!) + aijk(!)@kEj(r,!) + aijkl(!)@l@kEj(r,!). (2.35)

Together with

H(r,!) = µ
�1

0
B(r,!) (2.36)

these equations represent the constitutive relations for spatially dispersive media up to the

second order spatial dispersion.

Note that the dielectric displacement D depends not only on the electric field E, but

also on its derivatives. This drastically changes the boundary conditions for the fields at

interfaces. If D is not related locally to E anymore, we cannot conclude via

r⇥H(r,!) = �i!D(r,!) (2.37)

Homogenous material
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with the overall volume V of the medium. The response tensor R(r, r0,!) describes in

a very abstract and general form the averaged response of the medium upon the electric

field E. In this form even possible boundaries of the medium and even inhomogeneous

media are described correctly. However, this form is as impracticable as general. In fact,

such a representation is only evident in the context of microscopic fields, since it appears

paradox to speak about an averaged, homogeneous response if the response tensor is still

explicitly depending on r and r0. Under the assumption of a homogeneous and ideally

infinitely extended medium it simplifies to

J(r,!) =

Z

V

R(r� r0,!)E(r0,!)dV 0
. (2.25)

The response in now depending only on the di↵erence r � r0, i.e. the response (induced

current) is given by a convolution of the response tensor with the exciting electric field. Again

it is advantageous to consider the physical space as being discretized on the microscopic or

mesoscopic level, since the assumption above is obviously justified if only discrete lattice

points r are allowed for periodic media.

Assuming, that the response of the medium at a certain point depends only on the actual

value of the electric field at that position, the response is said to be local. Di↵erent unit

cells within the structure are then identical to those at the boundary. If, however, the re-

sponse depends also on the environment, i.e. neighboring unit cells, no hard boundaries of

the homogeneous medium exist. In the simplest case there exists a transition region, which

is modeled, even if the structure is isotropic, as an anisotropic layer called Drude transition

layer [71, 110, 111]. Such transition layers are important not only on a mesoscopic but also

on a microscopic scale and were taken into account already in the early beginning of e↵ective

medium theories [112], although their influence for natural media is quite negligible. Some

schemes aiming at the determination of e↵ective parameters take these layers phenomeno-

logical into account [113]. Note, that within the discretized media picture the macroscopic

fields are discretized on the lattice of the periodic structure, too.

Considering the response of a single complex entity it seems to be contradictory to assume,

that the response does not depend on neighboring unit cells and not on the local field E(r)

alone. This conflict is resolved by dropping the concept that a non-local response suggests a

dependency of the response on the environment. It is better understood as the dependency

of the response not only on the field at the position r but also on arbitrary derivatives of

the field at that point. This perception, however, does not exclude the dependency on the

environment, since the continuously di↵erentiable fields and its derivatives are determined

by the environment. With this modified understanding, which is justified more detailed later

on, a consistent understanding seems to be in reach.

Some remarks concerning the concepts above are necessary. Two important limiting cases

Spatial Fourier domain
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1

i!
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2

c2
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This form is as appealing as impracticable, since only light propagation in a homogeneous,

infinitely extended medium can be described, whereas nothing can be said about the bound-

aries. To handle the interface problem, it is necessary to return to real space via Fourier

transformation and to derive adequate transition conditions for the fields at the interfaces.

To perform the transition to real space without the convolution integral, the response R̃(k,!)

is expanded into a three-dimensional Taylor series at k = 0. While retaining expansion terms

of the second order it reads as

R̃(k,!) ⇡ R̃ij(k = 0,!) +
@R̃ij(k,!)

@kk

�����
k=0

kk +
1

2

@R̃ij(k,!)

@kk@kl

�����
k=0

kkkl (2.31)



3

2. Setting the stage - deriving the constitutive relations 18

= �i![aij(!) + aijk(!)kk + aijkl(!)kkkl], (2.32)

where the factor �i! was separated for convenience and summation over repeating indices

is assumed.

Here, some remarks are necessary. At first, for arbitrary small particles the response is

local and depends on the field at the position r only. Its response is entirely expressed by

the first term of the expansion. As soon as the variation of the field across the averaging

volume is no longer negligible, the response depends in a slightly refined approximation on

the wavevector k, too. This is represented by the second term of the sum in Eq. 2.32.

For particles that are even larger compared to the wavelength higher terms of the series

may contribute in general as well. But generally the particles are small compared to the

wavelength, since the averaging volume has to be small to allow for the homogenization.

Therefore, the expansion is meaningful at k = 0 only. Indeed the truncation of the series

corresponds to a spatial filtering analogous to the truncation of the multipole expansion as

we will see later on when comparing both approaches.

At second, certain relations are obtained for the coe�cients. Due to the interchangeability

of the spatial derivatives for continuously di↵erentiable functions, the indices k, l, ... indi-

cating spatial derivatives can be interchanged arbitrarily. Also, from the Casimir-Onsager-

relations for reciprocal media we have aij = aji, aijk = �ajik and aijkl = ajikl and analogously

for higher order terms [94].

The approximate expression for R̃(k,!) can now be reinserted into the current (2.26):

Ji(k,!) ⇡ �i! [aij(!)Ej(k,!) + aijk(!)kkEj(k,!) + aijkl(!)kjkkEj(k,!)] . (2.33)

Via inverse Fourier-transformation into real space we have:

Ji(r,!) ⇡ �i! [aij(!)Ej(r,!) + aijk(!)@kEj(r,!) + aijkl(!)@l@kEj(r,!)] . (2.34)

Therefore, we get for D:

Di(r,!) = ["0�ij + aij(!)]Ej(r,!) + aijk(!)@kEj(r,!) + aijkl(!)@l@kEj(r,!). (2.35)

Together with

H(r,!) = µ
�1

0
B(r,!) (2.36)

these equations represent the constitutive relations for spatially dispersive media up to the

second order spatial dispersion.

Note that the dielectric displacement D depends not only on the electric field E, but

also on its derivatives. This drastically changes the boundary conditions for the fields at

interfaces. If D is not related locally to E anymore, we cannot conclude via

r⇥H(r,!) = �i!D(r,!) (2.37)

Constitutive relation in Fourier space
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Together with
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�1

0
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these equations represent the constitutive relations for spatially dispersive media up to the

second order spatial dispersion.

Note that the dielectric displacement D depends not only on the electric field E, but

also on its derivatives. This drastically changes the boundary conditions for the fields at
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Constitutive relation in real space

We can shuffle electric and magnetic response!
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where the material response is described entirely by means of P = P(E,B) and M =

M(E,B). The equations for D and H are termed constitutive relations. This leads to

inhomogeneous Maxwell equations of the form

r⇥H(r, t) =
@D(r, t)

@t
+ Jext(r, t) (2.17)

and

r ·D(r, t) = ⇢ext(r, t). (2.18)

Together with the homogeneous equations (2.4) and the constitutive relations (2.16) they

build the complete set of field equations.

As already mentioned in the context of the multipole approach the definitions for D and

H (2.16) are not unique. In fact, the field equations are invariant under the transformation:

D0(r, t) = D(r, t) +r⇥Q(r, t), and H0(r, t) = H(r, t) +
@Q(r, t)

@t
(2.19)

with an arbitrary but di↵erentiable vector field Q(r, t). Hence, the fields P and M are not

unique, too. On one hand, the separation of the induced current becomes arbitrary and on

the other it is only meaningful, if physically motivated. The only relevant modification of

such a transformation concerns the boundary conditions, which have to be used. In fact,

that is the important advantage of such transformations. Exactly this type of transformation

will be used below to obtain simple boundary conditions.

For optical frequencies or more generally speaking for all non-magnetic materials, it is

neither possible nor necessary to perform a separation of the induced current into the po-

larization and the magnetization current. I.e., the overall response can be put in a single

induced current. We therefore rewrite the equations in frequency space as:

r⇥ E(r,!) = i!B(r,!),
1

µ0

r⇥B(r,!) = �i!E(r,!) + Jind(r,!) + Jext(r,!) (2.20)

"0r · E(r,!) = ⇢ind(r,!) + ⇢ext(r,!), r ·B(r,!) = 0, (2.21)

where the transition to frequency space is performed via Fourier transformation being defined

as:

E(r,!) =

Z 1

�1
E(r, t)e�i!t

dt. (2.22)

One formally defines

D(r,!) = "0E(r,!)�
Jind(r,!)

i!
, H(r,!) =

B(r,!)

µ0

. (2.23)

The overall response is driven by the electric field [108,109] and we can write formally:

J(r,!) =

Z

V

R(r, r0,!)E(r0,!)dV 0 (2.24)
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Together with

H(r,!) = µ
�1

0
B(r,!) (2.36)

these equations represent the constitutive relations for spatially dispersive media up to the

second order spatial dispersion.

Note that the dielectric displacement D depends not only on the electric field E, but

also on its derivatives. This drastically changes the boundary conditions for the fields at

interfaces. If D is not related locally to E anymore, we cannot conclude via

r⇥H(r,!) = �i!D(r,!) (2.37)

2. Setting the stage - deriving the constitutive relations 15

where the material response is described entirely by means of P = P(E,B) and M =
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r⇥H(r, t) =
@D(r, t)

@t
+ Jext(r, t) (2.17)

and

r ·D(r, t) = ⇢ext(r, t). (2.18)

Together with the homogeneous equations (2.4) and the constitutive relations (2.16) they

build the complete set of field equations.

As already mentioned in the context of the multipole approach the definitions for D and

H (2.16) are not unique. In fact, the field equations are invariant under the transformation:

D0(r, t) = D(r, t) +r⇥Q(r, t), and H0(r, t) = H(r, t) +
@Q(r, t)

@t
(2.19)

with an arbitrary but di↵erentiable vector field Q(r, t). Hence, the fields P and M are not

unique, too. On one hand, the separation of the induced current becomes arbitrary and on

the other it is only meaningful, if physically motivated. The only relevant modification of

such a transformation concerns the boundary conditions, which have to be used. In fact,

that is the important advantage of such transformations. Exactly this type of transformation

will be used below to obtain simple boundary conditions.

For optical frequencies or more generally speaking for all non-magnetic materials, it is

neither possible nor necessary to perform a separation of the induced current into the po-

larization and the magnetization current. I.e., the overall response can be put in a single

induced current. We therefore rewrite the equations in frequency space as:

r⇥ E(r,!) = i!B(r,!),
1

µ0

r⇥B(r,!) = �i!E(r,!) + Jind(r,!) + Jext(r,!) (2.20)

"0r · E(r,!) = ⇢ind(r,!) + ⇢ext(r,!), r ·B(r,!) = 0, (2.21)

where the transition to frequency space is performed via Fourier transformation being defined

as:

E(r,!) =

Z 1

�1
E(r, t)e�i!t

dt. (2.22)

One formally defines

D(r,!) = "0E(r,!)�
Jind(r,!)

i!
, H(r,!) =

B(r,!)

µ0

. (2.23)

The overall response is driven by the electric field [108,109] and we can write formally:

J(r,!) =

Z

V

R(r, r0,!)E(r0,!)dV 0 (2.24)

Think of Q as a gauge function; leaves E and B unaffected!
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Gauge away to some elements of the first order term
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on the continuity of the tangential components of H. Hence, depending on the truncation

order of the series, i.e. the number of derivatives of the electric field, additional bound-

ary conditions (ABC) are required [94]. Their introduction is discussed controversially in

the literature [114–118] and favorably avoided, whenever possible. Circumventing ABC’s is

achieved by exploiting the freedom of choice for the definition D and H as already expressed

in Eq. 2.19.

At first we focus on the first derivatives in Eq. (2.35). We choose for Q:

Qi =
1

4
"jlm(ailm � aiml + amli)Ej (2.38)

so that we get for D and H:

Di = "0"ijEj + i⇠ijBj + aijkl@l@kEj, Hi = µ
�1

0
Bi + ⇠jiEj (2.39)

where "0"ij = "0�ij + aij and ⇠ij =
!

4
"jlm(ailm � aiml + amli) with "jlm being the Levi-Civita

symbol. Note, that ⇠̃(!) as well as aijkl(!) are not dimensionless.

Assuming that the second order derivatives can be neglected, we are at the following

bianisotropic constitutive relations

D(r,!) = "0"̃(!)E(r,!) + i⇠̃(!)B(r,!), H(r,!) = µ
�1

0
B(r,!) + i⇠̃

T (!)E(r,!). (2.40)

Importantly, by this transformation (2.38) not only the constitutive relations are changed but

also the corresponding boundary conditions. The solution of the electromagnetic problem,

however, remains the same, independent of the particular choice of constitutive relations.

For media with spatial dispersion up to this first order, whose constitutive relations do

not contain spatial derivatives explicitly, the boundary conditions are the standard ones,

i.e. the continuity of the tangential E and H components and of the normal D and B

components. In fact, achieving these simple boundary conditions is the reason for performing

this transformation.

Media that are characterized by a non-vanishing parameter ⇠̃ 6= 0 (chirality parameter)

are termed chiral media due to a certain geometrical property. For the sake of simplicity

let us assume an isotropic medium where ⇠̃ = ⇠I. If the medium is mirror-symmetric, its

optical properties remain the same under reflection, i.e. the material parameters including

⇠ are even upon space inversion. Since D and B behave di↵erent upon inversion (one is

even, the other is odd), we must have ⇠ = 0 [94]. Hence, for mirror-symmetric (achiral)

media ⇠ = 0. Mirror-asymmetric media are called chiral. In fact, the definition of chirality

is more restrictive. A medium is called chiral, if its mirror image is not super-imposable

with the original structure by a proper rotation. I.e., in the general anisotropic case the

first derivatives do not vanish for directions where the structure is not mirror-symmetric,

although the overall structure might be achiral. That is for example the case for media, that
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local response
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Bianisotropic media with weak spatial dispersion
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weak non locality

• multiple solutions to the wave equation 
• additional boundary conditions are needed 
• carefully look for traces of such non locality
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2.1. Die Maxwellschen Gleichungen 

2.1.1. Übergang zu Gleichungen in der Optik 
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Metamaterialien:  ( , ) 0t ≠M r   

 
34 

2. Optische Felder in dispersiven und isotropen Medien 

2.1. Die Maxwellschen Gleichungen 

2.1.1. Übergang zu Gleichungen in der Optik 
 

Maxwellschen Gleichungen:   

 

( , )( , ) , ( , ) ( , )

( , )( , ) ( , ) , ( , ) 0

tt t t
t

tt t t
t

∂
= − = ρ

∂

∂
= + =

∂

B rrotE r divD r r

D rrotH r j r divB r

ext

makr

 

 

 

 

Materiefelder: 

 

[ ]

0

0

( , ) ( , ) ( , )

1( , ) ( , ) ( , )

t t t

t t t

= ε +

= −
µ

D r E r P r

H r B r M r

 

 

 

Polarisation ( , )tP r   ,  Magnetisierung  ( , )tM r   → Einfluß der Materie. 

[ ]( , ) ( , )t f tP r E r=   und  [ ]( , ) ( , )t f tM r B r=   →  Materialgleichungen  

 

Optik:  in der Regel mit unmagnetischen Medien →  ( , ) 0t =M r   

Metamaterialien:  ( , ) 0t ≠M r   

 

in optics

35 

Quellen:  
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Grundaufgabe der Optik: bei vorgegebenem Zusammenhang  ( )P E   und  

( )j E   →  Maxwell- Gleichungen konsistent lösen. 
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optische Intensität  

( , )I t= S r  

→  bei der Messung wird i.a. die Phaseninformation zerstört. 

Ende 4.V_SS2005 
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For!the!special!case!of!a!stationary,!i.e.!monochromatic!field!where!the!electric!field!

can!be!expressed!as!! !, !′ = ! !,!! !and!the!magnetic! field!can!be!expressed!as!

! !, !′ = ! !,!! ,!the!time!averaged!Poynting!vector!reads!as!

! !, ! = 1
2ℜ ! !,!! ×!∗ !,!! #

This!corresponds!to!the!intensity!! = ! !, ! .#

1.4.2#Energy#balance#
What!we!are!looking!for!at!the!moment!is!an!expression!for!the!dissipation!(consider!

here!only!passive!optical!media)!of!electromagnetic!energy!density!as!a!function!of!

the!absorption! (imaginary!part!of! the!permittivity)!and! the!magnitude!of! the! field.!

For!practical!purposes!this!is!important,!e.g.!if!you!wish!to!calculate!the!absorption!in!

a!solar!cell.!Then,!you!need!to!know!how!much!energy!is!dissipated,!i.e.!absorbed,!in!

the! spatial! domain! occupied! by! the! active!material! of! a! solar! cell,! e.g.! the! silicon!

material.!This!Poynting’s!theorem!as!it!is!also!called,!is!usually!derived!in!lectures!on!

electrodynamics!but!it!is!contained!here!both!because!of!its!importance!and!because!

it’s!a!nice!demonstration!on!how!to!derive!an!expression!for!an!observable!quantity!

directly! from!Maxwell’s! equations.! Starting! from!Maxwell’s! equation! in! space! and!

time!domain!and!multiplying!to!the!curl!equation!for!the!electric!field!the!magnetic!

field!and!to!the!curl!equation!for!the!magnetic!field!the!electric!field!provides!

##! !, ! ∙ !"#!! !, ! + !!! !, ! ∙ !!"! !, ! = 0!!

−ε!! !, ! ∙ !!" ! !, ! + ! !, ! ∙ !"#!! !, ! = ! !, ! ! !, ! + !
!" ! !, ! !!

Since! we! can! write!!"# ! !, ! ×! !, ! = ! !, ! ∙ !"#!! !, ! − ! !, ! ∙ !"#!! !, ! !we!

can!subtract!both!above!expressions!to!obtain!(dropping!from!now!on!the!space!and!

time!arguments)!

1
2 ε!

!
!" !

! + 12 !!
!
!"!

! + !"# !×! = −! !+ !
!" ! !

Eventually,! we! wish! to! emphasize! that! this! expression! holds! for! the! real! valued!

fields,!so!it!needs!to!be!written!as!
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!" !! !

! 18!

! !, ! = 1
2
1
2 ℜ ! !, !′ ×!∗ !, !′ !"′

!!!!

!!!!
!

For!the!special!case!of!a!stationary,!i.e.!monochromatic!field!where!the!electric!field!

can!be!expressed!as!! !, !′ = ! !,!! !and!the!magnetic! field!can!be!expressed!as!

! !, !′ = ! !,!! ,!the!time!averaged!Poynting!vector!reads!as!

! !, ! = 1
2ℜ ! !,!! ×!∗ !,!! #

This!corresponds!to!the!intensity!! = ! !, ! .#

1.4.2#Energy#balance#
What!we!are!looking!for!at!the!moment!is!an!expression!for!the!dissipation!(consider!

here!only!passive!optical!media)!of!electromagnetic!energy!density!as!a!function!of!

the!absorption! (imaginary!part!of! the!permittivity)!and! the!magnitude!of! the! field.!

For!practical!purposes!this!is!important,!e.g.!if!you!wish!to!calculate!the!absorption!in!

a!solar!cell.!Then,!you!need!to!know!how!much!energy!is!dissipated,!i.e.!absorbed,!in!

the! spatial! domain! occupied! by! the! active!material! of! a! solar! cell,! e.g.! the! silicon!

material.!This!Poynting’s!theorem!as!it!is!also!called,!is!usually!derived!in!lectures!on!

electrodynamics!but!it!is!contained!here!both!because!of!its!importance!and!because!

it’s!a!nice!demonstration!on!how!to!derive!an!expression!for!an!observable!quantity!

directly! from!Maxwell’s! equations.! Starting! from!Maxwell’s! equation! in! space! and!

time!domain!and!multiplying!to!the!curl!equation!for!the!electric!field!the!magnetic!

field!and!to!the!curl!equation!for!the!magnetic!field!the!electric!field!provides!

##! !, ! ∙ !"#!! !, ! + !!! !, ! ∙ !!"! !, ! = 0!!

−ε!! !, ! ∙ !!" ! !, ! + ! !, ! ∙ !"#!! !, ! = ! !, ! ! !, ! + !
!" ! !, ! !!

Since! we! can! write!!"# ! !, ! ×! !, ! = ! !, ! ∙ !"#!! !, ! − ! !, ! ∙ !"#!! !, ! !we!

can!subtract!both!above!expressions!to!obtain!(dropping!from!now!on!the!space!and!

time!arguments)!

1
2 ε!

!
!" !

! + 12 !!
!
!"!

! + !"# !×! = −! !+ !
!" ! !

Eventually,! we! wish! to! emphasize! that! this! expression! holds! for! the! real! valued!

fields,!so!it!needs!to!be!written!as!

1
2 ε!

!
!" !!

! + 12 !!
!
!"!!

! + !"# !!×!! = −!! !! +
!
!" !! !

! 18!

! !, ! = 1
2
1
2 ℜ ! !, !′ ×!∗ !, !′ !"′

!!!!

!!!!
!

For!the!special!case!of!a!stationary,!i.e.!monochromatic!field!where!the!electric!field!

can!be!expressed!as!! !, !′ = ! !,!! !and!the!magnetic! field!can!be!expressed!as!

! !, !′ = ! !,!! ,!the!time!averaged!Poynting!vector!reads!as!

! !, ! = 1
2ℜ ! !,!! ×!∗ !,!! #

This!corresponds!to!the!intensity!! = ! !, ! .#

1.4.2#Energy#balance#
What!we!are!looking!for!at!the!moment!is!an!expression!for!the!dissipation!(consider!

here!only!passive!optical!media)!of!electromagnetic!energy!density!as!a!function!of!

the!absorption! (imaginary!part!of! the!permittivity)!and! the!magnitude!of! the! field.!

For!practical!purposes!this!is!important,!e.g.!if!you!wish!to!calculate!the!absorption!in!

a!solar!cell.!Then,!you!need!to!know!how!much!energy!is!dissipated,!i.e.!absorbed,!in!

the! spatial! domain! occupied! by! the! active!material! of! a! solar! cell,! e.g.! the! silicon!

material.!This!Poynting’s!theorem!as!it!is!also!called,!is!usually!derived!in!lectures!on!

electrodynamics!but!it!is!contained!here!both!because!of!its!importance!and!because!

it’s!a!nice!demonstration!on!how!to!derive!an!expression!for!an!observable!quantity!

directly! from!Maxwell’s! equations.! Starting! from!Maxwell’s! equation! in! space! and!

time!domain!and!multiplying!to!the!curl!equation!for!the!electric!field!the!magnetic!

field!and!to!the!curl!equation!for!the!magnetic!field!the!electric!field!provides!

##! !, ! ∙ !"#!! !, ! + !!! !, ! ∙ !!"! !, ! = 0!!

−ε!! !, ! ∙ !!" ! !, ! + ! !, ! ∙ !"#!! !, ! = ! !, ! ! !, ! + !
!" ! !, ! !!

Since! we! can! write!!"# ! !, ! ×! !, ! = ! !, ! ∙ !"#!! !, ! − ! !, ! ∙ !"#!! !, ! !we!

can!subtract!both!above!expressions!to!obtain!(dropping!from!now!on!the!space!and!

time!arguments)!

1
2 ε!

!
!" !

! + 12 !!
!
!"!

! + !"# !×! = −! !+ !
!" ! !

Eventually,! we! wish! to! emphasize! that! this! expression! holds! for! the! real! valued!

fields,!so!it!needs!to!be!written!as!

1
2 ε!

!
!" !!

! + 12 !!
!
!"!!

! + !"# !!×!! = −!! !! +
!
!" !! !

! 18!

! !, ! = 1
2
1
2 ℜ ! !, !′ ×!∗ !, !′ !"′

!!!!

!!!!
!

For!the!special!case!of!a!stationary,!i.e.!monochromatic!field!where!the!electric!field!

can!be!expressed!as!! !, !′ = ! !,!! !and!the!magnetic! field!can!be!expressed!as!

! !, !′ = ! !,!! ,!the!time!averaged!Poynting!vector!reads!as!

! !, ! = 1
2ℜ ! !,!! ×!∗ !,!! #

This!corresponds!to!the!intensity!! = ! !, ! .#

1.4.2#Energy#balance#
What!we!are!looking!for!at!the!moment!is!an!expression!for!the!dissipation!(consider!

here!only!passive!optical!media)!of!electromagnetic!energy!density!as!a!function!of!

the!absorption! (imaginary!part!of! the!permittivity)!and! the!magnitude!of! the! field.!

For!practical!purposes!this!is!important,!e.g.!if!you!wish!to!calculate!the!absorption!in!

a!solar!cell.!Then,!you!need!to!know!how!much!energy!is!dissipated,!i.e.!absorbed,!in!

the! spatial! domain! occupied! by! the! active!material! of! a! solar! cell,! e.g.! the! silicon!

material.!This!Poynting’s!theorem!as!it!is!also!called,!is!usually!derived!in!lectures!on!

electrodynamics!but!it!is!contained!here!both!because!of!its!importance!and!because!

it’s!a!nice!demonstration!on!how!to!derive!an!expression!for!an!observable!quantity!

directly! from!Maxwell’s! equations.! Starting! from!Maxwell’s! equation! in! space! and!

time!domain!and!multiplying!to!the!curl!equation!for!the!electric!field!the!magnetic!

field!and!to!the!curl!equation!for!the!magnetic!field!the!electric!field!provides!

##! !, ! ∙ !"#!! !, ! + !!! !, ! ∙ !!"! !, ! = 0!!

−ε!! !, ! ∙ !!" ! !, ! + ! !, ! ∙ !"#!! !, ! = ! !, ! ! !, ! + !
!" ! !, ! !!

Since! we! can! write!!"# ! !, ! ×! !, ! = ! !, ! ∙ !"#!! !, ! − ! !, ! ∙ !"#!! !, ! !we!

can!subtract!both!above!expressions!to!obtain!(dropping!from!now!on!the!space!and!

time!arguments)!

1
2 ε!

!
!" !

! + 12 !!
!
!"!

! + !"# !×! = −! !+ !
!" ! !

Eventually,! we! wish! to! emphasize! that! this! expression! holds! for! the! real! valued!

fields,!so!it!needs!to!be!written!as!

1
2 ε!

!
!" !!

! + 12 !!
!
!"!!

! + !"# !!×!! = −!! !! +
!
!" !! !

subtracting 1 - 2

! 18!

! !, ! = 1
2
1
2 ℜ ! !, !′ ×!∗ !, !′ !"′

!!!!

!!!!
!

For!the!special!case!of!a!stationary,!i.e.!monochromatic!field!where!the!electric!field!

can!be!expressed!as!! !, !′ = ! !,!! !and!the!magnetic! field!can!be!expressed!as!

! !, !′ = ! !,!! ,!the!time!averaged!Poynting!vector!reads!as!

! !, ! = 1
2ℜ ! !,!! ×!∗ !,!! #

This!corresponds!to!the!intensity!! = ! !, ! .#

1.4.2#Energy#balance#
What!we!are!looking!for!at!the!moment!is!an!expression!for!the!dissipation!(consider!

here!only!passive!optical!media)!of!electromagnetic!energy!density!as!a!function!of!

the!absorption! (imaginary!part!of! the!permittivity)!and! the!magnitude!of! the! field.!

For!practical!purposes!this!is!important,!e.g.!if!you!wish!to!calculate!the!absorption!in!

a!solar!cell.!Then,!you!need!to!know!how!much!energy!is!dissipated,!i.e.!absorbed,!in!

the! spatial! domain! occupied! by! the! active!material! of! a! solar! cell,! e.g.! the! silicon!

material.!This!Poynting’s!theorem!as!it!is!also!called,!is!usually!derived!in!lectures!on!

electrodynamics!but!it!is!contained!here!both!because!of!its!importance!and!because!

it’s!a!nice!demonstration!on!how!to!derive!an!expression!for!an!observable!quantity!

directly! from!Maxwell’s! equations.! Starting! from!Maxwell’s! equation! in! space! and!

time!domain!and!multiplying!to!the!curl!equation!for!the!electric!field!the!magnetic!

field!and!to!the!curl!equation!for!the!magnetic!field!the!electric!field!provides!

##! !, ! ∙ !"#!! !, ! + !!! !, ! ∙ !!"! !, ! = 0!!

−ε!! !, ! ∙ !!" ! !, ! + ! !, ! ∙ !"#!! !, ! = ! !, ! ! !, ! + !
!" ! !, ! !!

Since! we! can! write!!"# ! !, ! ×! !, ! = ! !, ! ∙ !"#!! !, ! − ! !, ! ∙ !"#!! !, ! !we!

can!subtract!both!above!expressions!to!obtain!(dropping!from!now!on!the!space!and!

time!arguments)!

1
2 ε!

!
!" !

! + 12 !!
!
!"!

! + !"# !×! = −! !+ !
!" ! !

Eventually,! we! wish! to! emphasize! that! this! expression! holds! for! the! real! valued!

fields,!so!it!needs!to!be!written!as!

1
2 ε!

!
!" !!

! + 12 !!
!
!"!!

! + !"# !!×!! = −!! !! +
!
!" !! !


