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Rayleigh-Sommerfeld

Final reSUIt 1 , au(r’) , aG(r,r') ’
from Kirchhoff: " ~an ﬂz (G(”) - — —u(r)—~ )dzr

Kirchhoff has mathematical inconsistencies

both the field and its normal derivative vanish on the boundary of the screen
if a two-dimensional potential function and its normal derivative vanish
together along any finite curve segment, then that potential function must
vanish over the entire plane

How to mitigate this problem?

* modify the Green’s function such that the development leading to the above

oG (r,rs .
( )shall vanish

equation remains valid, but in addition either G(r,1") or

across the entire surface S; — impose different boundary
conditions when solving for the

Green’s function of the half space 2



—  Dirichlet or Neumann boundary condition

* this was done by Sommerfeld

vanishing field or vanishing normal derivative of the field

* whether the first or the second condition mentioned is fulfilled, we will

approach two different Rayleigh-Sommerfeld formulations
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* Green’s function is not just generated from a pointinr
* we add a second Green’s function that is located in the same x and y

coordinate but which emerges from a spatial point at —z.

eikonlrl—rl eik0n|rl—rn|

Gi(r,xr') = withr" = (x,y,—2)
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* Green’s functions solutions to same differential equations

* Green’s functions have the useful properties that

0G4 (rrr)
on o

G_(r,r')=0 0 forr' € §;

requires to know either the field or the normal
derivative across the aperture 4



First Rayleigh-Sommerfeld

1 0G_(r, 1’
u,(r) = —Eﬂz u(r’) 6(1: r) d?r’

specify the solution by calculating the normal derivative of G_(r, 1)

66_6(;, r)_ cos(2(n,r' —r)) (ikon T 1_ l'|) e;:c:rirrlrl
1 pikon|rr—rr1]
—cos(z(n, ' —1")) (ikon T ) "
 with |r'—r|=|r'—r"| and cos(¢(n,r' —r)) = —cos(z(n,r' — "))
aG_(r, 1) , . 1 eikon|r/—r|
P 2cos(4(n,r' — 1)) (lkon e rl) T
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twice the normal derivative of the Green’s function G(r,r’) used in the

Kirchhoff formula.
J0G(r,r
u,(r) = ——ﬂ u(r") ( ) d?r’

approximation: the distance of the point of interest relative to the screen is

much larger than the wavelength (|r' — r| > 2)

9G_(r,1" pikgnirr—r]
6(n ) = 2ikoncos(z(n,r' —r))

r —ri

final gtkon|rr=ri
S | ug(r) = i1 ff u(r') 1| COS(L(H; r'— l‘)) d*r’
0

* same procedure for the different choice of the Green’s function

Second Rayleigh-Sommerfeld

' G
up(r) = %ﬂ; (G+(l‘» r) 61;(: )) d?r'||uz(r) = ﬂ (G(r r) L )) d2r’
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final result
Rayleigh-

Fresnel approximation

Sommerfeld I:

lk0n|l"—l‘|

w® =], T

assume thatx’,y' K zand x,y < z

first
implication

second
|mpI|cat|on

how to approximate e

assumez' =0 —»

1 1

~yy
a4

|r7—r]| Z

cos(z(n,r' —r)) d?r’

cos(4(n,r' — 1)) =

ikon|r/—r|

r'—r?=2z2+x"—-x)*+ (' —y)?

making a Taylor series of second order



x —x\° y —y 2 1/x' —x\° 1 y —y 2
kon|r' —r| = kynz 1+( Z )+< - ) = konz 1+§< ~ >+§( ~ )

* Plugging this into the first Rayleigh-Sommerfeld diffraction formula leads to

final U (l‘) — ne‘kon? u(r’)e ZZ [(xl—x)2+(yl—3’)2]d2 '
result: Fresnel iz s

Fresnel as FFT (easy to compute on a computer)

lkonz kon(x +}’2) " (x 24y 2) nx ny
ne n\x/ ! _ nx i
Upresnel (I) = fj [u(r’)e 2 z ‘ Zm(lo X 207 )dz

iAyz

tial n
fre(?t?:nlc?les. and cd
A’OZ /102
12 12 / /
T+ X +
Validity: % TY") @ )
Ar3
n(D/2)* nD?* A
A 168 'n_zoF2 <1 Fresnel number: F = n(D/2)?/(\z)
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Fraunhofer approximation

final result Fresnel approximation

kon(x +y2)

Lk nzp 2 2

ne'*o kon(xr +yr?) —Zm(nxx’+ ny )

uFresnel(r)_ U u(r')e 2 Z Aoz Aoz dz ’
IAyz

kon (x* +y?) " (xx"+yy") 4 on (x" +y")

approximation: k.nlr' —r| = k.nz + — kon
pp 0 | | 0 2 P 0 7 2 7

* the last possible approximation is the far-field approximation

* neglecting the terms that depend on x'* and y'

kon (x* + y*) (xx" +yy')
— kon

- konlr' —r| = konz +
oIt — 1| = konz + == — kgn-——
2
nelkonz+lk0n(x Ty ) _ 1 Y )
u (r) = H u(r)e ™ (o7 + 207 d2r’
Fraunhofer i1
iAyz
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* now this is just the Fourier transform using

! —l —x+k—y 2.7
U(k kZ 2n ﬂ u(re (kg +gy') g2,

2 2 14,2
final " (r) = n(2m) lkonz+ik3n(x o )U (kf kX)
result: Fraunhofer i ;{0 7 7 ’ 7
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Validity requirement: 7mn LT = F«1
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and Kirchhoff Sommerfeld Fresnel Fraunhoter
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Method of stationary points

general method to calculate integrals I = j f g(p, q)e™ ®Ddpdq

approximately when k> 1 and g(p,q) varies slowly
here: Fresnel —— Fraunhofer

Kk >»> 1 —— integral oscillates rapidly —— contribution cancel

— contribution only at stationary points pm and g,

stationary points defined as

of

[ e — 0 — - —
dp o dq fa |pm:Qm 0

Pm.9m
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integral gets sum

M

2T 1 -
[ = = Z - gD, Gy ) €S Pram)
m=1 \/ fopem) faqm) — Z fpzq(m) proof in exercise

application to Fresnel integral

* . _i 2B (.2, p2) .
Upresnel (X, Y, Zg) = Jj U.,.(a,ﬂ;ZA)e‘konzBe leon(a +B )el(ax+By)dadﬂ
— 00

extending the exponential argument with konzp

. a« x B y\ 1 a®  p?
LkonZB’(konzBTkonzB) 2<k3n21-k(2)n2

Ugresnel (X, Y, Zg) = etkonzp ff Uy(a, ﬁ;ZA)e dadf

substitution: | p = k;in q= £ K = konzg

require that « > 1 18



identify

f(, 9 —p— ql——(p +q%)

Zp Zp

uFresnel(x Y, ZB) - konzeuC Jf U+ (konp' konq; ZA)ein(p'q)dpdq

quantities above

of _ «x of _ vy d%f azf__1 azf_o

op zz P'oq zz Lopz 9qz ' opaq

1 stationary point only

P1 = iand qd1 = i
x? + y?
fuLq1) =

2Zp



plug this into the discrete sum

leads to Fraunhofer approximation

n(2m)?

idyzg

kon
U _ i X Y i=2—(x2+y?)
k .
Fraunhofer (X, ¥, Zp) = et oz, (k yk—; ZA> e 2Zp

Zp Zp

at any spatial position only one spatial frequency contributes

U, (k e Z; Z4)

to enforce approximation: k> 1

 aperture size to wavelength is small
 aperture size to distance small

Np = EE<01
A zp
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