Diffraction Theory: Rayleigh-Sommerfeld

Rayleigh-Sommerfeld

Final result from Kirchhoff:

$$u(\mathbf{r}) = \frac{1}{4\pi} \iint_{\Sigma} \left(G(\mathbf{r}, \mathbf{r}') \frac{\partial u(\mathbf{r}')}{\partial \mathbf{n}} - u(\mathbf{r}') \frac{\partial G(\mathbf{r}, \mathbf{r}')}{\partial \mathbf{n}} \right) d^2 r'$$

- Kirchhoff has mathematical inconsistencies
- both the field and its normal derivative vanish on the boundary of the screen
- if a two-dimensional potential function and its normal derivative vanish together along any finite curve segment, then that potential function must vanish over the entire plane
- How to mitigate this problem?
 - modify the Green's function such that the development leading to the above equation remains valid, but in addition either $G(\mathbf{r},\mathbf{r}')$ or $\frac{\partial G(\mathbf{r},\mathbf{r}')}{\partial \mathbf{n}}$ shall vanish across the entire surface S_1 impose different boundary conditions when solving for the

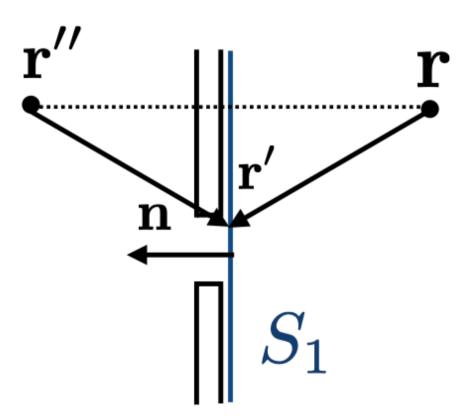
Green's function of the half space

Dirichlet or Neumann boundary condition

this was done by Sommerfeld

vanishing field or vanishing normal derivative of the field

 whether the first or the second condition mentioned is fulfilled, we will approach two different Rayleigh-Sommerfeld formulations



- Green's function is not just generated from a point in r
- we add a second Green's function that is located in the same x and y coordinate but which emerges from a spatial point at -z.

$$G_{\pm}(\mathbf{r},\mathbf{r}') = \frac{e^{ik_0n|\mathbf{r}'-\mathbf{r}|}}{|\mathbf{r}'-\mathbf{r}|} \pm \frac{e^{ik_0n|\mathbf{r}'-\mathbf{r}''|}}{|\mathbf{r}'-\mathbf{r}''|} \quad \text{with } \mathbf{r}'' = (x,y,-z)$$

with
$$\mathbf{r}'' = (x, y, -z)$$

- Green's functions solutions to same differential equations
- Green's functions have the useful properties that

$$G_{-}(\mathbf{r},\mathbf{r}')=0$$

$$G_{-}(\mathbf{r},\mathbf{r}')=0$$

$$\frac{\partial G_{+}(\mathbf{r},\mathbf{r}')}{\partial \mathbf{n}}=0$$

for
$$\mathbf{r}' \in \mathbf{S}_1$$

requires to know either the field or the normal derivative across the aperture

First Rayleigh-Sommerfeld

$$u_1(\mathbf{r}) = -\frac{1}{4\pi} \iint_{\Sigma} u(\mathbf{r}') \frac{\partial G_{-}(\mathbf{r}, \mathbf{r}')}{\partial \mathbf{n}} d^2 r'$$

specify the solution by calculating the normal derivative of $G_{-}(\mathbf{r},\mathbf{r}')$

$$\frac{\partial G_{-}(\mathbf{r}, \mathbf{r}')}{\partial \mathbf{n}} = \cos(\angle(\mathbf{n}, \mathbf{r}' - \mathbf{r})) \left(ik_0 n - \frac{1}{|\mathbf{r}' - \mathbf{r}|}\right) \frac{e^{ik_0 n|\mathbf{r}' - \mathbf{r}|}}{|\mathbf{r}' - \mathbf{r}|}$$
$$-\cos(\angle(\mathbf{n}, \mathbf{r}' - \mathbf{r}'')) \left(ik_0 n - \frac{1}{|\mathbf{r}' - \mathbf{r}''|}\right) \frac{e^{ik_0 n|\mathbf{r}' - \mathbf{r}''|}}{|\mathbf{r}' - \mathbf{r}''|}$$

• with $|\mathbf{r}' - \mathbf{r}| = |\mathbf{r}' - \mathbf{r}''|$ and $\cos(\angle(\mathbf{n}, \mathbf{r}' - \mathbf{r})) = -\cos(\angle(\mathbf{n}, \mathbf{r}' - \mathbf{r}''))$

$$\frac{\partial G_{-}(\mathbf{r},\mathbf{r}')}{\partial \mathbf{n}} = 2\cos(\angle(\mathbf{n},\mathbf{r}'-\mathbf{r}))\left(ik_0n - \frac{1}{|\mathbf{r}'-\mathbf{r}|}\right)\frac{e^{ik_0n|\mathbf{r}'-\mathbf{r}|}}{|\mathbf{r}'-\mathbf{r}|}$$

twice the normal derivative of the Green's function $G(\mathbf{r},\mathbf{r}')$ used in the Kirchhoff formula.

$$u_1(\mathbf{r}) = -\frac{1}{2\pi} \iint_{\Sigma} u(\mathbf{r}') \frac{\partial G(\mathbf{r}, \mathbf{r}')}{\partial \mathbf{n}} d^2r'$$

approximation: the distance of the point of interest relative to the screen is much larger than the wavelength $(|\mathbf{r}' - \mathbf{r}| \gg \lambda)$

$$\frac{\partial G_{-}(\mathbf{r}, \mathbf{r}')}{\partial \mathbf{n}} = 2ik_0 n \cos(\angle(\mathbf{n}, \mathbf{r}' - \mathbf{r})) \frac{e^{ik_0 n|\mathbf{r}' - \mathbf{r}|}}{|\mathbf{r}' - \mathbf{r}|}$$

final result:
$$u_1(\mathbf{r}) = \frac{n}{i\lambda_0} \iint_{\Sigma} u(\mathbf{r}') \frac{e^{ik_0 n|\mathbf{r}'-\mathbf{r}|}}{|\mathbf{r}'-\mathbf{r}|} \cos(\angle(\mathbf{n},\mathbf{r}'-\mathbf{r})) d^2r'$$

same procedure for the different choice of the Green's function

Second Rayleigh-Sommerfeld

Diffraction Theory: Rayleigh-Sommerfeld

Diffraction Theory: Fresnel approximation

Fresnel approximation

final result Sommerfeld I:

Final result Rayleigh-
$$u_1(\mathbf{r}) = \frac{n}{i\lambda_0} \iint_{\Sigma} u(\mathbf{r}') \frac{e^{ik_0 n|\mathbf{r}'-\mathbf{r}|}}{|\mathbf{r}'-\mathbf{r}|} \cos(\angle(\mathbf{n}, \mathbf{r}'-\mathbf{r})) d^2r'$$

• assume that $x', y' \ll z$ and $x, y \ll z$

$$\frac{\text{first}}{\text{implication}} \qquad \frac{1}{|\mathbf{r'} - \mathbf{r}|} \approx \frac{1}{z}$$

$$\frac{\text{second}}{\text{implication}} \quad \boxed{\cos(\angle(\mathbf{n}, \mathbf{r}' - \mathbf{r})) \approx 1}$$

how to approximate $e^{ik_0n|\mathbf{r}\prime-\mathbf{r}|}$

• assume
$$z' = 0$$
 \longrightarrow $|\mathbf{r}' - \mathbf{r}|^2 = z^2 + (x' - x)^2 + (y' - y)^2$

making a Taylor series of second order

$$k_0 n |\mathbf{r}' - \mathbf{r}| = k_0 n z \sqrt{1 + \left(\frac{x' - x}{z}\right)^2 + \left(\frac{y' - y}{z}\right)^2} \approx k_0 n z \left[1 + \frac{1}{2} \left(\frac{x' - x}{z}\right)^2 + \frac{1}{2} \left(\frac{y' - y}{z}\right)^2\right]$$

Plugging this into the first Rayleigh-Sommerfeld diffraction formula leads to

final result:

$$u_{\text{Fresnel}}(\mathbf{r}) = \frac{ne^{ik_0nz}}{i\lambda_0z} \iint_{\Sigma} u(\mathbf{r}')e^{i\frac{k_0n}{2z}[(x'-x)^2+(y'-y)^2]}d^2r'$$

Fresnel as FFT (easy to compute on a computer)

$$u_{\text{Fresnel}}(\mathbf{r}) = \frac{ne^{ik_0nz}e^{i\frac{k_0n(x^2+y^2)}{2}}}{i\lambda_0z} \iint_{\Sigma} \left[u(\mathbf{r}')e^{i\frac{k_0n(x'^2+y'^2)}{2}} \right] e^{-2\pi i\left(\frac{nx}{\lambda_0z}x' + \frac{ny}{\lambda_0z}y'\right)} d^2r'$$

Spatial
$$\frac{nx}{\lambda_0 z}$$
 and $\frac{ny}{\lambda_0 z}$

Validity:
$$n \frac{\left(x'^2 + y'^2\right) \left(xx' + yy'\right)}{\lambda r^3} \ll 1$$

$$\xrightarrow{n(D/2)^4} \frac{nD^4}{\lambda z_0^3} = \frac{nD^4}{16\lambda z_0^3} = \frac{\lambda}{nz_0} F^2 \ll 1$$
 Fresnel number: $F = n(D/2)^2/(\lambda z_0)$

Diffraction Theory: Fresnel approximation

Diffraction Theory: Fraunhofer approximation

Fraunhofer approximation

final result Fresnel approximation

$$u_{\text{Fresnel}}(\mathbf{r}) = \frac{ne^{ik_0nz}e^{i\frac{k_0n(x^2+y^2)}{2}}}{i\lambda_0z} \iint_{\Sigma} \left[u(\mathbf{r}')e^{i\frac{k_0n(xr^2+yr^2)}{2}} \right] e^{-2\pi i\left(\frac{nx}{\lambda_0z}x' + \frac{ny}{\lambda_0z}y'\right)} d^2r'$$

approximation:
$$k_0 n |\mathbf{r}' - \mathbf{r}| \cong k_0 n z + \frac{k_0 n}{2} \frac{(x^2 + y^2)}{z} - k_0 n \frac{(x x' + y y')}{z} + \frac{k_0 n}{2} \frac{(x'^2 + y'^2)}{z}$$

- the last possible approximation is the far-field approximation
- neglecting the terms that depend on x'^2 and y'^2

$$\rightarrow k_0 n |\mathbf{r}' - \mathbf{r}| \cong k_0 n z + \frac{k_0 n}{2} \frac{(x^2 + y^2)}{z} - k_0 n \frac{(x x' + y y')}{z}$$

$$u_{\text{Fraunhofer}}(\mathbf{r}) = \frac{ne^{ik_0nz + i\frac{k_0n(x^2 + y^2)}{2}}}{i\lambda_0z} \iint_{\Sigma} u(\mathbf{r}')e^{-2\pi i\left(\frac{nx}{\lambda_0z}x' + \frac{ny}{\lambda_0z}y'\right)}d^2r'$$

now this is just the Fourier transform using

$$U\left(k\frac{x}{z}, k\frac{y}{z}\right) = \left(\frac{1}{2\pi}\right)^{2} \iint_{\Sigma} u(\mathbf{r}') e^{-i\left(k\frac{x}{z}x' + k\frac{y}{z}y'\right)} d^{2}r'$$

final result:

$$u_{\text{Fraunhofer}}(\mathbf{r}) = \frac{n(2\pi)^2}{i\lambda_0 z} e^{ik_0 nz + i\frac{k_0 n(x^2 + y^2)}{2}} U\left(k\frac{x}{z}, k\frac{y}{z}\right)$$

Validity requirement:

$$\pi n \frac{x^{2} + y^{2}}{\lambda r} \ll \pi \qquad \frac{nD^{2}}{4\lambda z_{0}} = F \ll 1$$

Diffraction Theory: Fraunhofer approximation

Diffraction Theory: Method of stationary points

Method of stationary points

general method to calculate integrals
$$I = \iint g(p,q) e^{i \kappa f(p,q)} dp dq$$

approximately when $\kappa \gg 1$ and g(p,q) varies slowly

here: Fresnel ------ Fraunhofer

 $\kappa \gg 1 \longrightarrow$ integral oscillates rapidly \longrightarrow contribution cancel

 \longrightarrow contribution only at stationary points p_m and q_m stationary points defined as

$$\left. \frac{\partial f}{\partial p} \right|_{p_m, q_m} = f_p \big|_{p_m, q_m} = 0$$

$$\left| \frac{\partial f}{\partial q} \right|_{p_m, q_m} = f_q \big|_{p_m, q_m} = 0$$

integral gets sum

$$I = \frac{2\pi}{i\kappa} \sum_{m=1}^{M} \frac{1}{\sqrt{f_{pp(m)}f_{qq(m)} - \frac{1}{4}f_{pq(m)}^2}} g(p_m, q_m) e^{i\kappa f(p_m, q_m)}$$
 proof in exercise

application to Fresnel integral

$$u_{\text{Fresnel}}(x, y, z_B) = \iint_{-\infty}^{\infty} U_+(\alpha, \beta; z_A) e^{ik_0 n z_B} e^{-i\frac{z_B}{2k_0 n}(\alpha^2 + \beta^2)} e^{i(\alpha x + \beta y)} d\alpha d\beta$$

extending the exponential argument with k_0nz_B

$$u_{\text{Fresnel}}(x, y, z_B) = e^{ik_0 n z_B} \iint_{-\infty}^{\infty} U_+(\alpha, \beta; z_A) e^{ik_0 n z_B \left[\left(\frac{\alpha}{k_0 n z_B} + \frac{\beta}{k_0 n z_B} \right) - \frac{1}{2} \left(\frac{\alpha^2}{k_0^2 n^2} + \frac{\beta^2}{k_0^2 n^2} \right) \right]} d\alpha d\beta$$

substitution:
$$\left| p = \frac{\alpha}{k_0 n} \right| \quad \left| q = \frac{\beta}{k_0 n} \right| \quad \left| \kappa = k_0 n z_B \right|$$

$$q = \frac{\beta}{k_0 n}$$

$$\kappa = k_0 n z_B$$

require that $\kappa \gg 1$

identify

$$f(p,q) = p\frac{x}{z_B} + q\frac{y}{z_B} - \frac{1}{2}(p^2 + q^2)$$

$$u_{\text{Fresnel}}(x,y,z_B) = k_0^2 n^2 e^{i\kappa} \iint_{-\infty}^{\infty} U_+(k_0 np, k_0 nq; z_A) e^{i\kappa f(p,q)} dp dq$$

quantities above

$$\frac{\partial f}{\partial p} = \frac{x}{z_B} - p, \frac{\partial f}{\partial q} = \frac{y}{z_B} - q, \frac{\partial^2 f}{\partial p^2} = \frac{\partial^2 f}{\partial q^2} = -1, \frac{\partial^2 f}{\partial p \partial q} = 0$$

1 stationary point only

$$p_1 = \frac{x}{z_B}$$
 and $q_1 = \frac{y}{z_B}$

$$f(p_1, q_1) = \frac{x^2 + y^2}{2z_R}$$

plug this into the discrete sum

leads to Fraunhofer approximation

$$u_{\text{Fraunhofer}}(x, y, z_B) = \frac{n(2\pi)^2}{i\lambda_0 z_B} e^{ik_0 n z_B} U_+ \left(k \frac{x}{z_B}, k \frac{y}{z_B}; z_A \right) e^{i\frac{k_0 n}{2z_B}(x^2 + y^2)}$$

at any spatial position only one spatial frequency contributes

$$U_+\left(k\frac{x}{z_B},k\frac{y}{z_B};z_A\right)$$

to enforce approximation: $\kappa \gg 1$

- aperture size to wavelength is small
- aperture size to distance small

$$N_F = \frac{a}{\lambda} \frac{a}{z_B} \lesssim 0.1$$

Diffraction Theory: Method of stationary points

