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Basics of holography

information of an object encoded in amplitude and phase of scattered light

1948 Dennis Gabor
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Recording and reconstruction

Reference
wave

object wave u(TI)

reference wave u,(r) = a,e'®oT

coordinate of recording medium ¢

Object

wave
Recording
medium

iIntensity in recording plane

1) = u(®) + ug(®I* = laol* + agu(§e ™% + aqu’ (He™* + [u(§)I?

/!

intensity of reference much larger, last term drops 6



blackening proportional to local intensity

filter has local transmission function > t(f) =1- VI (SZ)

/

contrast function

ilumination the filter with reconstruction wave: U4 (I‘) = aleikl'r

field behind filter: ~ W(&) = t(&)uy ()

thin element approximation

w(§) =a,(1—vylagl?)e™¢ —ya agu(&)e'®ikolé —ya, qgu*(§)elkitko)?

discussion of terms on following slide



discussion of terms with K; = K|,

1st term |
> a. (1 —v|ay|?)e*r¢ plane wave propagates into the
direction of reconstruction wave

consequence of imperfection

2nd term * U(f) corresponds up to some
amplitude to the object field

3rd term ; _
— yajaut(§) et J

complex conjugated object field

propagates into direction @ i2ko-¢

application in phase conjugation



Design of holograms Hologram
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Gerchberg-Saxton / Ping-Pong / Iterative Fourier Transform
Algorithm / Method of Generalizd Projection / .....



2-D spot
array

Lens

phase grating

Fan-out

Example fan-out element
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hologram actual image

desired image
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Susceptibility and permittivity tensor

so far
Isotropic materials: properties independent on light propagation direction

NOW

anisotropic materials: properties depend on light propagation direction

polarisability of atoms depends on the orientation of the electric field

examples
Lithiumniobate (LiNbOs) —> electro-optical material
Quartz — polarizers
Liquid crystals — display elements, nonlinear optics
Multiple quantum wells — optoelectronics
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Assumptions:

|sotropic materials:

monochromatic field and plane wave

(one temporal frequency and one spatial frequency)

no absorption

normal modes are elliptically polarized, monochromatic waves

P(r,w) = g,y (w)E(r, w)
D(r,w) = ge(w)E(r, w)

Anisotropic materials:

Pi(r, (l)) = &)

3

J=1

Xij(w) Ej(r,w) = gx;;(0)E;(r, w)

task: need to find normal modes in anisotropic materials

material property:

2" rank tensor ¥(w) and Xij(w)
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Consequences: * P L E

* susceptibility tensor reflects the crystal symmetry

Anisotropic materials (1st alternativ description):

D;(r,w) = g&;;(w)E;(r, )
D(r,w) = €x€(w)E(r, w)

Consequences: ¢ D} E

e permittivity tensor reflects the crystal symmetry

Anisotropic materials (2nd alternativ description):

0;i(w)D;(r,w) = E;(r,w) &=&""1=(0;)

iInverse permittivity tensor 5



Properties of tensors: — real valued in transparency region

—> tensors are symmetric

— six independent components g;; = gj; and &;; = &j;

— matrices are Hermitian (EZ- =€)

Proof of hermiticity.: = Maxwell equations in Fourier space

diV(E X H*)+ia)(80E - (;:*E*) - H H) +j -E=0

lossless medium:  J = 0 > div (S) =%5R[diV(E><H*)]=0

» SR(iE-(;:* E*))z—S(E-(;:* E*)):O

has to hold for an arbitrary electric field
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consider a field where  f_ # () S[E (8* )Ex] = ‘Ex‘z S(afm) =0

X XX

analog for £ and £ , | diagonal elements of tensor
YY zz must be real valued
remaining components J(en B By + e, EEL) = (e, EE, —¢,EE,)
N = 3|(ey —e,) ELE, |
= 0
* —
8y = Cyx

can be generalised to all components
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transformation into principal coordinate system possible

— tensors are diagonal

— example of the inverse permittivity tensor

— only in this coordinate system D || E

— mathematically this can be expressed in terms of an eigenvalue equation
gk = 0;;D; = AD;

non-trivial solution: vanishing determinant
det|o;; — Al;;| =0

equation of 3" order with three roots as solutions — called 1(®)

—> associated eigenvectors
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eigenvectors are orthogonal

consider: &, D' =AD" and o, DJ(.B) =P p®
multiplication

(B) () (a) B) _ (14 (o) B) (B) (o)
and subtraction: Di Giij _Di D (7‘“ —A )Di Di

but D}B)GﬁDl.(“) — Di(a)cyl.jD;B) —() because O. =0

ji if
—> Dl.(B)Dl.(a) =0 for A 2 P
principal axes reflect crystal symmetry: &;; = £;0;;, 0;; = 0;0;; ~ 5lj
B & () 0 0 anisotropic material fully
(gij) — 0 £2(w) 0 described using three different
0 0 e3(w) dielectric functions

calculations mostly done in principal coordinate system and
results are transferred later to the lab coordinate system 19
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