Basics of holography

Prof. Carsten Rockstuhl

1

Basics of holography

information of an object encoded in amplitude and phase of scattered light

Basics of holography

information of an object encoded in amplitude and phase of scattered light

1948 Dennis Gabor (Nobel prize 1971)

recording

reconstruction

Recording and reconstruction

intensity of reference much larger, last term drops 40

blackening proportional to local intensity

filter has local transmission function $\longrightarrow t(\xi) = 1 - \gamma I(\xi)$ contrast function

illumination the filter with reconstruction wave: $u_1(\mathbf{r}) = a_1 e^{i\mathbf{k}_1 \cdot \mathbf{r}}$

field behind filter: $w(\xi) = t(\xi)u_1(\xi)$

thin element approximation

 $w(\xi) = a_1(1-\gamma|a_0|^2)e^{i\mathbf{k}_1\cdot\xi} - \gamma a_1a_0^*u(\xi)e^{i(\mathbf{k}_1-\mathbf{k}_0)\cdot\xi} - \gamma a_1a_0u^*(\xi)e^{i(\mathbf{k}_1+\mathbf{k}_0)\cdot\xi}$

discussion of terms on following slide

discussion of terms with $\mathbf{k}_1 = \mathbf{k}_0$

3rd term

$$\rightarrow \gamma a_1 a_0 u^*(\xi) e^{i2\mathbf{k}_0\cdot\xi}$$
 complex conjugated object field

propagates into direction $e^{i 2 \mathbf{k}_0 \cdot \xi}$

application in phase conjugation

Algorithm / Method of Generalizd Projection /

Example fan-out element

desired image

hologram

actual image₁₀

Basics of holography

Prof. Carsten Rockstuhl

Optics in anisotropic media: susceptibility and permittivity tensor

Prof. Carsten Rockstuhl

Susceptibility and permittivity tensor

so far

isotropic materials: properties independent on light propagation direction

now

anisotropic materials: properties <u>depend</u> on light propagation direction

polarisability of atoms depends on the orientation of the electric field

examples

Lithiumniobate (LiNbO₃)

 \rightarrow electro-optical material

Quartz

 \rightarrow polarizers

Liquid crystals

→ display elements, nonlinear optics

Multiple quantum wells

 \rightarrow optoelectronics

Assumptions:

- monochromatic field and plane wave (one temporal frequency and one spatial frequency)
- no absorption

Isotropic materials:

normal modes are elliptically polarized, monochromatic waves

$$\overline{\mathbf{P}}(\mathbf{r},\omega) = \varepsilon_0 \chi(\omega) \overline{\mathbf{E}}(\mathbf{r},\omega)$$
$$\overline{\mathbf{D}}(\mathbf{r},\omega) = \varepsilon_0 \varepsilon(\omega) \overline{\mathbf{E}}(\mathbf{r},\omega)$$

Anisotropic materials:

$$P_{i}(\mathbf{r},\omega) = \varepsilon_{0} \sum_{j=1}^{3} \chi_{ij}(\omega) E_{j}(\mathbf{r},\omega) \stackrel{\text{\tiny def}}{=} \varepsilon_{0} \chi_{ij}(\omega) E_{j}(\mathbf{r},\omega)$$

task: need to find normal modes in anisotropic materials

<u>material property:</u> 2^{nd} rank tensor $\hat{\chi}(\omega)$ and $\chi_{ij}(\omega)$

<u>Consequences:</u> • $\mathbf{P} \not\parallel \mathbf{E}$

• susceptibility tensor reflects the crystal symmetry

Anisotropic materials (1st alternativ description):

$$D_{i}(\mathbf{r},\omega) = \varepsilon_{0}\varepsilon_{ij}(\omega)E_{j}(\mathbf{r},\omega)$$
$$\mathbf{D}(\mathbf{r},\omega) = \varepsilon_{0}\hat{\mathbf{\epsilon}}(\omega)\mathbf{E}(\mathbf{r},\omega)$$

<u>Consequences:</u> • $\mathbf{D} \not\parallel \mathbf{E}$

• permittivity tensor reflects the crystal symmetry

Anisotropic materials (2nd alternativ description):

$$\sigma_{ij}(\omega)D_j(\mathbf{r},\omega) = \varepsilon_0 E_i(\mathbf{r},\omega) \quad \widehat{\boldsymbol{\sigma}} = (\widehat{\boldsymbol{\varepsilon}})^{-1} = (\sigma_{ij})$$

inverse permittivity tensor

<u>Properties of tensors:</u> \rightarrow real valued in transparency region

 \rightarrow tensors are symmetric

 \rightarrow six independent components $\sigma_{ij} = \sigma_{ji}$ and $\varepsilon_{ij} = \varepsilon_{ji}$

 \rightarrow matrices are Hermitian ($\varepsilon_{ij}^{H} = \varepsilon_{ji}^{*}$)

Proof of hermiticity: Maxwell equations in Fourier space

$$\operatorname{div}(\mathbf{E}\times\mathbf{H}^{*})+\operatorname{i}\omega\left(\varepsilon_{0}\mathbf{E}\cdot\left(\hat{\mathbf{\varepsilon}}^{*}\mathbf{E}^{*}\right)-\left(\boldsymbol{\mu}_{0}\mathbf{H}^{*}\left(\mathbf{H}\right)\right)+\mathbf{j}^{*}\cdot\mathbf{E}=\mathbf{0}^{*}\mathbf{j}$$

has to hold for an arbitrary electric field

transformation into principal coordinate system possible

- → tensors are diagonal
- → example of the inverse permittivity tensor
- \rightarrow only in this coordinate system $\mathbf{D} \parallel \mathbf{E}$
- → mathematically this can be expressed in terms of an eigenvalue equation

$$\varepsilon_0 E_i = \sigma_{ij} D_j \doteq \lambda D_i$$

non-trivial solution: vanishing determinant

$$\det[\sigma_{ij} - \lambda I_{ij}] = 0$$

equation of 3rd order with three roots as solutions \rightarrow called $\lambda^{(\alpha)}$

→ associated eigenvectors

$$\sigma_{ij}D_j^{(\alpha)} = \lambda^{(\alpha)}D_i^{(\alpha)}$$

eigenvectors are orthogonal

β β

β

consider:
$$\sigma_{ij}D_{j}^{(\alpha)} = \lambda^{(\alpha)}D_{i}^{(\alpha)} \text{ and } \sigma_{ij}D_{j}^{(\beta)} = \lambda^{(\beta)}D_{i}^{(\beta)}D_{i}^{(\beta)}$$
multiplication
and subtraction:
$$D_{i}^{(\beta)}\sigma_{ij}D_{j}^{(\alpha)} - D_{i}^{(\alpha)}\sigma_{ij}D_{j}^{(\beta)} = (\lambda^{(\alpha)} - \lambda^{(\beta)})D_{i}^{(\beta)}D_{i}^{(\alpha)}$$
but
$$D_{j}^{(\beta)}\sigma_{ji}D_{i}^{(\alpha)} - D_{i}^{(\alpha)}\sigma_{ij}D_{j}^{(\beta)}\beta = 0 \left(\begin{array}{c} \text{because } \beta \\ \beta \end{array} \right)^{ji} = \beta^{ji}\beta^{ji}\beta \right) \beta$$

$$\rightarrow \boxed{D_i^{(\beta)} D_i^{(\alpha)}}_{\beta} = 0 \qquad \beta \text{ for } \qquad \lambda^{(\alpha\beta)} \neq \lambda^{(\beta)}$$

principal axes reflect crystal symmetry: $\varepsilon_{ij} = \varepsilon_i \delta_{ij}$, $\sigma_{ij} = \sigma_i \delta_{ij} = \frac{1}{\varepsilon_i} \delta_{ij}$

$$\left(\varepsilon_{ij} \right) = \begin{bmatrix} \varepsilon_1(\omega)_{\beta} & 0 & 0 \\ 0 & \beta & \varepsilon_2(\omega) & 0 \\ 0 & 0 & \varepsilon_3(\omega) \end{bmatrix}$$
 anisotropic material fully described using three different different described using three described using three different described using three described using thre

calculations mostly done in principal coordinate system and results are transferred later to the lab coordinate system

Optics in anisotropic media: susceptibility and permittivity tensor

Prof. Carsten Rockstuhl

