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Approach 3: Derivation of the dispersion relation:
brut force

study monochromatic plane wave ~elk(w)r-wt)
— put wave number explicitly depends on the propagation direction
— k(w, direction)
— (educated guess): polarization of the normal modes no longer elliptically
— introduce notation for wave vector as
k4 Uy
k = (kz) = k("h) with uf +us +us =1
k- Us
— goal: find w = w(k,uq,u,, uz) ork = k(w, uq, Uy, us)
— Maxwell’s equations in spatial Fourier domain with the ansatz from above
k-D=0 KXE = wuyH
k-H=0 KkXxH=—-wD



— wave equation —[kX (kXE)] — 2 D
CO 80
w? 1
—k(k-E)-l-sz: > D
0 €0

3 (1)2
— in component notation —k; kjE] kZEl = — &E;
j=1 Co
02 , 3
— & T k Ei — _kl k]E]
Co j=1

— for isotropic material the right hand side is equal to zero

— restore ordinary dispersion relation

— eigenvalue equation that asks to solve the following characteristic equation
3



_(1)2
?81 - k% - k% k1k2 k1k3
0
w2 E4 0
kzkl _282 - k% - k% k2k3 E2 — O
o E. 0
(1)2
k3k1 k3k2 ?83 - ka_ - k%
0 _

— determinant of this linear system is zero

— from det[...]=0 we obtain dispersion relation w = w(k) for a given ratio of k; /k

one equation with four free parameters

fix three of these parameters and compute the
fourth parameter

problem solved
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Approach 4: Derivation of the dispersion relation:
sophisticated approach

wave equation in 2 3

principal coordllnate o — 2 E;, = —k; k.E.
system and in

component notation

E il 23 ki E
l (w_z | ) j=1
— multiplication with k;, summation over i, substitution between i and j on |lhs

3 3 kiZ 3
k:E: = _z z k:E-
Zj=1 J =1 (w_zg ) j=1 J

3
preliminary Z : : =1
dispersion relation i=1 ( @ )




by rewriting the kq ul w 1
wave vector as ky | =k(w)| U2 | = an(w) U,

k3 u3 u3
3 kLZ 3 uiZ
2 =1 - z =1
=1 (kz _ w_z =1 (1 € )
Cg & (w) nZ(w)

23 u; 1
i=1 (@) — g(w)) n*(w)

— final dispersion relation — can calculate n(w, uy, u;)

explicit expression

ui (n® — g,)(n® — g)n® +us(n® — g1)(n® — g3)n® + us(n® — g1)(n* — ,)n?

= (n* — g)(n* — &) (n* — &3)

— quadratic equation in n? (n® terms are vanishing)

. . . w

— two solutions n, and n, and with this also , k, , = — Tgp
0
normal modes have a polarisation in the electric

displacement for which they are perpendicular on each other 8




Example

— propagation direction along one of the principal axes (u; = 1)

(n* —&g)(n* —g)n* = (n* — g)(n* — &) (n* — £3)

solutions:

ng = ¢

2

and n: = ¢,

computing the normal modes:
(starting point again wave equation)

— from 2}93:1 k;iE; = const we can write down the ratio of the amplituc

—> Ei=

(

w™ 42
-2 g — k
0

i 23 k.E
wz ) i=1 ]~

sum is independent on |

El:EZ:EB —_

(

0)2

€S as




In combination with D; = g4¢;E; we obtain

g1k4 &k, 3k

— field components are real valued
— no phase difference between the different components

—> |inear polarization for the normal modes.

— modes D@ and D® are orthogonal

Normal surfaces

—> also called iso-frequency surface or iso-surface
— plot the index of the two modes as surfaces depending on k;

— centro-symmetric two-layer surface

—> cross sections with principal axes are either circles or ellipses 4,



biaxial crystal

k3/koA
optical axis  |"2

— the two surfaces intersect in four different points
— connecting lines between the two points are the two optical axes

— optical axis defined as direction where the wave experiences no

birefringence
11



uniaxial crystal
k3/k A
optical axis |7

kl/k() n

%

— body of revolution made from an ellipse and a sphere

— two intersection points at the poles

— connecting line equally provides information on the optical axes (z)
—> & = & = &y, and g5 = &,

— subscripts or and e stands for ordinary and extraordinary optical
axes

12



cubic crystal

R3/k, A

the structure is

Isotropic and the
- two interfaces are
ko/k, identical

ki/k,

how to use normalsurfaces

— fix the directions u; and u,

— identify the intersections with the surfaces

— distance between from coordinate to intersections provides refractive indices of

the normal modes

— only if considered along optical axes, the two indices are identical n, = n,

13



summary of the two geometrical interpretation

(a) Index ellipsoid
-Direction fixed — identifying index ellipse — semi-axes provide n,
and n;, being the indices, which are experienced by the normal
modes

(b) Normal surfaces

-Direction fixed — cross section to the normal surfaces — distance to
the center provide n, and n,, optical axis is the connecting line

between the center and the cross section of the two branches

essence
— two linearly polarised monochromatic waves as normal modes

Co

— have different phase velocities, given by -
a,b

— two perpendicular polarization direction

can be extracted once material and propagation direction are fixed 14



Theoretical Optics

Optics in anisotropic media:
derivation of dispersion relation (b)

Prof. Carsten Rockstuhl

ST

Karlsruhe Institute of Technology

15



