Optics in anisotropic media: derivation of dispersion relation (a)

Approach 3: Derivation of the dispersion relation: brut force

study monochromatic plane wave

$$\sim e^{i(\mathbf{k}(\omega)\cdot\mathbf{r}-\omega t)}$$

- → but wave number explicitly depends on the propagation direction
- $\rightarrow k(\omega, direction)$
- → (educated guess): polarization of the normal modes no longer elliptically
- → introduce notation for wave vector as

$$\mathbf{k} = \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = k \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \text{ with } u_1^2 + u_2^2 + u_3^2 = 1$$

- \rightarrow goal: find $\omega = \omega(k, u_1, u_2, u_3)$ or $k = k(\omega, u_1, u_2, u_3)$
- → Maxwell's equations in spatial Fourier domain with the ansatz from above

$$\mathbf{k} \cdot \mathbf{D} = 0$$
 $\mathbf{k} \times \mathbf{E} = \omega \mu_0 \mathbf{H}$

$$\mathbf{k} \cdot \mathbf{H} = 0 \qquad \mathbf{k} \times \mathbf{H} = -\omega \mathbf{D}$$

$$-[\mathbf{k} \times (\mathbf{k} \times \mathbf{E})] = \frac{\omega^2}{c_0^2} \frac{1}{\varepsilon_0} \mathbf{D}$$

$$-\mathbf{k}(\mathbf{k} \cdot \mathbf{E}) + \mathbf{k}^2 \mathbf{E} = \frac{\omega^2}{c_0^2} \frac{1}{\varepsilon_0} \mathbf{D}$$

→ in principal coordinate system

$$D_i = \varepsilon_0 \varepsilon_i E_i$$

→ in component notation

$$-k_{i} \sum_{j=1}^{3} k_{j} E_{j} + k^{2} E_{i} = \frac{\omega^{2}}{c_{0}^{2}} \varepsilon_{i} E_{i}$$

$$\left(\frac{\omega^2}{c_0^2}\varepsilon_i - k^2\right)E_i = -k_i \sum_{j=1}^3 k_j E_j$$

- → for isotropic material the right hand side is equal to zero
- → restore ordinary dispersion relation
- → eigenvalue equation that asks to solve the following characteristic equation

$$\begin{bmatrix} \frac{\omega^2}{c_0^2} \varepsilon_1 - k_2^2 - k_3^2 & k_1 k_2 & k_1 k_3 \\ k_2 k_1 & \frac{\omega^2}{c_0^2} \varepsilon_2 - k_1^2 - k_3^2 & k_2 k_3 \\ k_3 k_1 & k_3 k_2 & \frac{\omega^2}{c_0^2} \varepsilon_3 - k_1^2 - k_2^2 \end{bmatrix} \begin{pmatrix} E_1 \\ E_2 \\ E_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

- → determinant of this linear system is zero
- \rightarrow from det[...]=0 we obtain dispersion relation $\omega=\omega(k)$ for a given ratio of k_i/k

one equation with four free parameters

fix three of these parameters and compute the fourth parameter

problem solved

Optics in anisotropic media: derivation of dispersion relation (a)

Optics in anisotropic media: derivation of dispersion relation (b)

Approach 4:

Derivation of the dispersion relation: sophisticated approach

wave equation in principal coordinate system and in component notation

$$\left(\frac{\omega^2}{c_0^2}\varepsilon_i - k^2\right)E_i = -k_i \sum_{j=1}^3 k_j E_j$$

$$E_i = -\frac{k_i}{\left(\frac{\omega^2}{c_0^2}\varepsilon_i - k^2\right)} \sum_{j=1}^3 k_j E_j$$

 \rightarrow multiplication with k_i , summation over i, substitution between i and j on the

$$\sum_{j=1}^{3} k_j E_j = -\sum_{i=1}^{3} \frac{k_i^2}{\left(\frac{\omega^2}{c_0^2} \varepsilon_i - k^2\right)} \sum_{j=1}^{3} k_j E_j$$

 \rightarrow divergence of the electric field is not vanishing: $\operatorname{\mathbf{div}} \mathbf{E} = \sum_{i=1}^{3} k_i E_i \neq 0$

preliminary dispersion relation
$$\sum_{i=1}^{3} \frac{k_i^2}{\left(k^2 - \frac{\omega^2}{c_0^2} \varepsilon_i\right)} = 1$$

by rewriting the wave vector as
$$\binom{k_1}{k_2} = k(\omega) \binom{u_1}{u_2} = \frac{\omega}{c_0} n(\omega) \binom{u_1}{u_2}$$

$$\sum_{i=1}^{3} \frac{k_i^2}{\left(k^2 - \frac{\omega^2}{c_0^2} \varepsilon_i(\omega)\right)} = 1 \to \sum_{i=1}^{3} \frac{u_i^2}{\left(1 - \frac{\varepsilon_i}{n^2(\omega)}\right)} = 1$$

$$\sum_{i=1}^{3} \frac{u_i^2}{(n^2(\omega) - \varepsilon_i(\omega))} = \frac{1}{n^2(\omega)}$$

→ final dispersion relation

 \rightarrow can calculate $n(\omega, u_1, u_2)$

explicit expression

$$u_1^2(n^2 - \varepsilon_2)(n^2 - \varepsilon_3)n^2 + u_2^2(n^2 - \varepsilon_1)(n^2 - \varepsilon_3)n^2 + u_3^2(n^2 - \varepsilon_1)(n^2 - \varepsilon_2)n^2$$
$$= (n^2 - \varepsilon_1)(n^2 - \varepsilon_2)(n^2 - \varepsilon_3)$$

- \rightarrow quadratic equation in n^2 (n^6 terms are vanishing)
- \rightarrow two solutions n_a and n_b and with this also , $k_{a,b} = \frac{\omega}{c_a} n_{a,b}$

normal modes have a polarisation in the electric displacement for which they are perpendicular on each other

Example

 \rightarrow propagation direction along one of the principal axes ($u_3=1$)

$$(n^2 - \varepsilon_1)(n^2 - \varepsilon_2)n^2 = (n^2 - \varepsilon_1)(n^2 - \varepsilon_2)(n^2 - \varepsilon_3)$$

solutions:

$$n_a^2 = \varepsilon_1$$
 and $n_b^2 = \varepsilon_2$

computing the normal modes:

(starting point again wave equation)

$$\left(\frac{\omega^2}{c_0^2}\varepsilon_i - k^2\right)E_i = -k_i \sum_{j=1}^3 k_j E_j \quad \Rightarrow \quad \left[E_i = -\frac{k_i}{\left(\frac{\omega^2}{c_0^2}\varepsilon_i - k^2\right)} \sum_{j=1}^3 k_j E_j\right]$$

sum is independent on i

 \rightarrow from $\sum_{j=1}^{3} k_j E_j = const$ we can write down the ratio of the amplitudes as

$$E_1: E_2: E_3 = \frac{k_1}{\left(\frac{\omega^2}{c_0^2} \varepsilon_1 - k^2\right)} : \frac{k_2}{\left(\frac{\omega^2}{c_0^2} \varepsilon_2 - k^2\right)} : \frac{k_3}{\left(\frac{\omega^2}{c_0^2} \varepsilon_3 - k^2\right)}$$

In combination with $D_i = \varepsilon_0 \varepsilon_i E_i$ we obtain

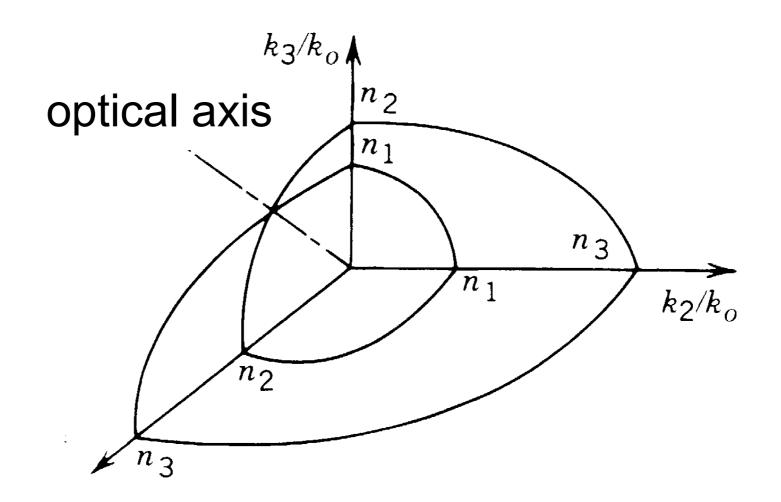
$$D_1: D_2: D_3 = \frac{\varepsilon_1 k_1}{\left(\frac{\omega^2}{c_0^2} \varepsilon_1 - k^2\right)} : \frac{\varepsilon_2 k_2}{\left(\frac{\omega^2}{c_0^2} \varepsilon_2 - k^2\right)} : \frac{\varepsilon_3 k_3}{\left(\frac{\omega^2}{c_0^2} \varepsilon_3 - k^2\right)}$$

- → field components are real valued
- → no phase difference between the different components
- → linear polarization for the normal modes.
- \rightarrow modes $\mathbf{D}^{(a)}$ and $\mathbf{D}^{(b)}$ are orthogonal

Normal surfaces

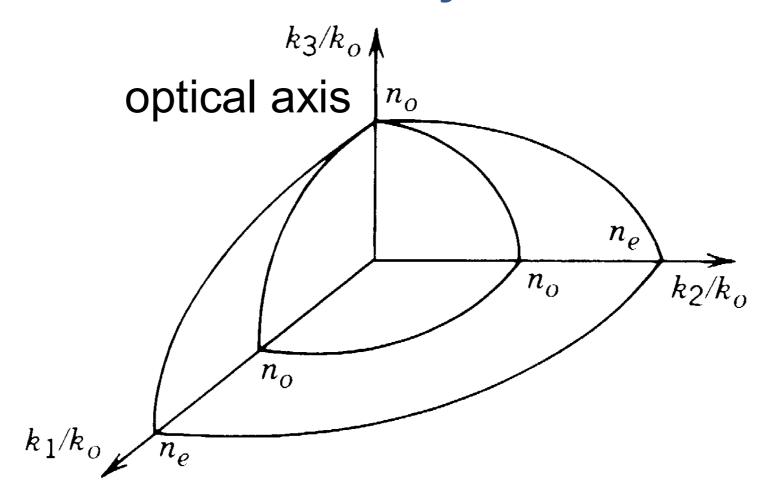
- → also called iso-frequency surface or iso-surface
- \rightarrow plot the index of the two modes as surfaces depending on k_i
- → centro-symmetric two-layer surface
- → cross sections with principal axes are either circles or ellipses 10

biaxial crystal



- → the two surfaces intersect in four different points
- → connecting lines between the two points are the two **optical axes**
- → optical axis defined as direction where the wave experiences no birefringence

uniaxial crystal

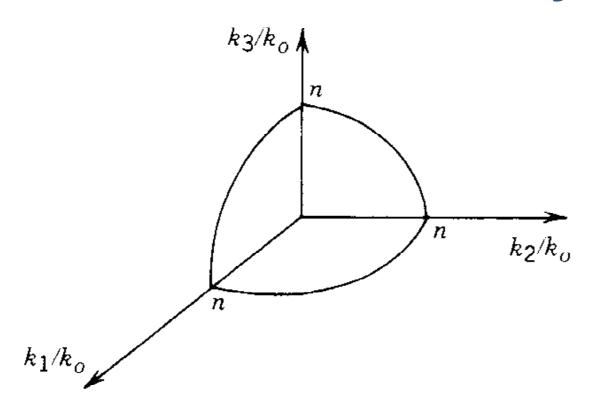


- → body of revolution made from an ellipse and a sphere
- → two intersection points at the poles
- → connecting line equally provides information on the optical axes (z)

$$\rightarrow \varepsilon_1 = \varepsilon_2 = \varepsilon_{\rm or}$$
 and $\varepsilon_3 = \varepsilon_{\rm e}$

→ subscripts or and e stands for ordinary and extraordinary optical axes

cubic crystal



the structure is isotropic and the two interfaces are identical

how to use normalsurfaces

- \rightarrow fix the directions u_1 and u_2
- → identify the intersections with the surfaces
- → distance between from coordinate to intersections provides refractive indices of the normal modes
- ightarrow only if considered along optical axes, the two indices are identical $n_a=n_b$

summary of the two geometrical interpretation

(a) Index ellipsoid

-Direction fixed \to identifying index ellipse \to semi-axes provide n_a and n_b , being the indices, which are experienced by the normal modes

(b) Normal surfaces

-Direction fixed \rightarrow cross section to the normal surfaces \rightarrow distance to the center provide n_a and n_b , optical axis is the connecting line between the center and the cross section of the two branches

essence

- → two linearly polarised monochromatic waves as normal modes
- \rightarrow have different phase velocities, given by $\frac{c_0}{n_{a,b}}$
- → two perpendicular polarization direction
 can be extracted once material and propagation direction are fixed

Optics in anisotropic media: derivation of dispersion relation (b)

