Theoretical Optics

Propagating Surface Plasmon Polaritons

Prof. Carsten Rockstuhl

Guided modes in general

- guided modes are waves that propagate free of diffraction
- miniaturisation of optical comports in integrated circuits
- enhancement of nonlinear effects
- super-resolution using plasmonic thin films

note the modified principle propagation direction

Properties of guides modesplane wave along the
interface: $e^{ik_z z}$ conserved in all layersoscillating inside the core: $\propto A \sin k_{fx} x + B \cos k_{fx} x$

$$k_{ix} = \sqrt{\frac{\omega^2}{c^2}} \epsilon_i(\omega) - k_z^2$$

Constraints on the propagation constant

at least one propagating plane wave somewhere in the core

$$k_z^2 < \frac{\omega^2}{c^2} \max_i \left\{ \epsilon_i(\omega) \right\}$$

evanescent in cladding and substrate

$$k_z^2 > \frac{\omega^2}{c^2} \max\left\{\epsilon_{s,c}(\omega)\right\}$$

field structure:

$$\propto e^{-\mu_{
m c}(x-D)}$$
 cladding

$$\propto e^{\mu_{
m s}x}$$

substrate

$$\mu_{\rm s,c} = \sqrt{k_z^2 - \frac{\omega^2}{c^2}} \epsilon_{\rm s,c} > 0$$

$$\max\left\{\frac{\omega}{c}n_{\rm s,c}\right\} < k_z < \max_i\left\{\frac{\omega}{c}n_i\right\}$$

Existence condition for guided modes

require a reflected and transmitted field (exponentially decaying) in the absence of some illumination

$$T = \frac{\mathbf{E}_T}{\mathbf{E}_I} , \ R = \frac{\mathbf{E}_R}{\mathbf{E}_I} \text{ and } \mathbf{E}_T, \ \mathbf{E}_R \neq 0 \text{ for } \mathbf{E}_I \rightarrow 0$$
$$\longrightarrow R, \ T \rightarrow \infty$$

guided waves are resonances of the system

general physical principle,

i.e., compare driven harmonic oscillator

can extract dispersion relation of guided modes

Consider previous results on reflection coefficient

$$R = \frac{F_{\mathbf{R}}}{F_{\mathbf{I}}} = \frac{(\alpha_{s}k_{s\mathbf{x}}M_{22} - \alpha_{c}k_{c\mathbf{x}}M_{11}) - \mathbf{i}(M_{21} + \alpha_{s}k_{s\mathbf{x}}\alpha_{c}k_{c\mathbf{x}}M_{12})}{(\alpha_{s}k_{s\mathbf{x}}M_{22} + \alpha_{c}k_{c\mathbf{x}}M_{11}) + \mathbf{i}(M_{21} - \alpha_{s}k_{s\mathbf{x}}\alpha_{c}k_{c\mathbf{x}}M_{12})}$$

$$(($$
singularities: $\rightarrow (\alpha_{s}k_{s\mathbf{x}}M_{22} + \alpha_{c}k_{c\mathbf{x}}M_{11}) + \mathbf{i}(M_{21} - \alpha_{s}k_{s\mathbf{x}}\alpha_{c}k_{c\mathbf{x}}M_{12}) = 0$

$$($$
using $k_{s\mathbf{x}} = i\mu_{s}, k_{c\mathbf{x}} = i\mu_{c}$

$$M_{11}^{\text{TE,TM}} + \alpha_{s}\mu_{s}M_{12}^{\text{TE,TM}} + \frac{1}{\alpha_{c}\mu_{c}}M_{21}^{\text{TE,TM}} + \frac{\alpha_{s}\mu_{s}}{\alpha_{c}\mu_{c}}M_{22}^{\text{TE,TM}} = 0$$

$$) ($$
only discrete number of solutions: guides modes

Surface plasmon polaritons
Possible to sustain a guided mode at a single interface?
Transfer matrix:
$$\hat{\mathbf{M}} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 Dispersion $1 + \frac{\alpha_{s}\mu_{s}}{\alpha_{c}\mu_{c}} = 0$
relation: $1 + \frac{\alpha_{s}\mu_{s}}{\alpha_{c}\mu_{c}} = 0$
TE Polarisation: $\mu_{s} + \mu_{c} = 0$ no solution!
 $\alpha = 1$
TM Polarisation: $\frac{\mu_{c}^{\alpha}}{\epsilon_{c}} + \frac{\mu_{s}}{\epsilon_{s}} = 0$ $\stackrel{\mu_{c,s} > 0}{\longrightarrow}$ $\epsilon_{c} \epsilon_{s} < 0$

guided TM-polarised surface waves exist below plasma frequency for metals or close to resonances at materials characterised by Lorentzian dispersion

Explicit dispersion relation

$$\frac{\mu_{c}}{\varepsilon_{c}} + \frac{\mu_{s}}{\varepsilon_{s}} = 0 \longrightarrow (\mu_{c}\varepsilon_{s})^{2} = (\mu_{s}\varepsilon_{c})^{2}$$
$$\varepsilon_{c}^{2} (\omega) \left\{ k_{z}^{2} - \frac{\omega^{2}}{c^{2}}\varepsilon_{c} \right\} = \varepsilon_{c}^{2} \left\{ k_{z}^{2} - \frac{\omega^{2}}{c^{2}}\varepsilon_{s} (\omega) \right\}$$

final dispersion relation:

$$k_{z}(\omega) = \frac{\omega}{c} \sqrt{\frac{\varepsilon_{s}(\omega)\varepsilon_{c}}{\varepsilon_{c} + \varepsilon_{s}(\omega)}}$$

conditions:
$$\epsilon_{\rm c}\epsilon_{\rm s} < 0$$
 $\epsilon_{\rm c}+\epsilon_{\rm s} < 0$))

Dispersion relation for a Drude material

Field profile

Exciting propagating surface plasmon polaritons

Kretschmann configuration

single scatterer

Theoretical Optics

Propagating Surface Plasmon Polaritons

Prof. Carsten Rockstuhl

Theoretical Optics

1D Photonic Crystals

Prof. Carsten Rockstuhl

principle propagation direction

- Bragg mirrors
- chirped mirrors for dispersion compensation
- interferometers

Nature 497, 348-352

$$\begin{array}{ll} \mbox{Properties of periodic systems}\\ \mbox{assumption: periodic repetition of two layers} \end{array}$$

$$\begin{array}{ll} \mbox{requirement} & \longrightarrow & \epsilon(z) = \epsilon(z+\Lambda) & \Lambda = d_1 + d_2 \end{array}$$

$$\mbox{Bloch theorem} & \longrightarrow & E(x,z;\omega) = e^{i[k_x x + k_z(k_x,\omega)z]} E_{k_z}(z) \\ & E_{k_z}(z+\Lambda) = E_{k_z}(z) \end{array}$$

$$\begin{array}{ll} \mbox{k_z = unknown Bloch vector} \end{array}$$

$$k_z(k_x,\omega)$$
 = dispersion relation for Bloch wave

use
$$K\doteq k_z$$
 for simplification

Bloch theorem connecting layer N with N+1

$$\begin{pmatrix} F \\ G \end{pmatrix}_{(N+1)d} = \begin{pmatrix} E \\ E' \end{pmatrix}_{(N+1)d} = e^{iK\Lambda} \begin{pmatrix} E \\ E' \end{pmatrix}_{Nd}$$

known from matrix equation

$$\left(\begin{array}{c}E\\E'\end{array}\right)_{(N+1)d} = \hat{\mathbf{M}} \left(\begin{array}{c}E\\E'\end{array}\right)_{Nd}$$

$$\hat{\mathbf{M}} = \hat{\mathbf{m}}^{(2)} (d_2) \, \hat{\mathbf{m}}^{(1)} (d_1) \implies M_{ij} = \sum_k m_{ik}^{(2)} m_{kj}^{(1)}$$

equating both expressions

$$\left\{\hat{\mathbf{M}} - e^{iK\Lambda}\hat{\mathbf{I}}\right\} \left(\begin{array}{c} E\\ E'\end{array}\right)_{Nd} = 0$$

explicit solution using

$$\mu = e^{iK\Lambda} \qquad \det\left\{\hat{\mathbf{M}} - \mu\hat{\mathbf{I}}\right\} = 0$$

$$\mu = e^{iK\Lambda} = \frac{M_{11} + M_{22}}{2} \pm \sqrt{\left\{\frac{M_{11} + M_{22}}{2}\right\}^2 - 1}$$

evanescent solution $\implies K$ purely imaginary
$$\mu = \text{real valued} \implies \left|\frac{M_{11} + M_{22}}{2}\right| \ge 1$$
$$M_{11} = \cos(k_{1z}d_1)\cos(k_{2z}d_2) - \frac{k_{2z}}{k_{1z}}\sin(k_{1z}d_1)\sin(k_{2z}d_2)$$
$$M_{22} = \cos(k_{1z}d_1)\cos(k_{2z}d_2) - \frac{k_{1z}}{k_{2z}}\sin(k_{1z}d_1)\sin(k_{2z}d_2)$$

defines optical band gap with no propagating solutions

more explicit dispersion relation

$$\mu = e^{iK\Lambda} = \cos(K\Lambda) + i\sin(K\lambda) = \cos(K\Lambda) - \sqrt{\left\{\cos(K\Lambda)\right\}^2 - 1}$$

$$\cos(K(k_x,\omega)\Lambda) = \frac{M_{11} + M_{22}}{2}$$

consequences for evanescent waves

$$\Re\{K(k_x,\omega)\Lambda\} = n\pi$$

$$\Im\{K(k_x,\omega)\Lambda\} = \ln\left(\left(-1\right)^n \left\{\frac{M_{11} + M_{22}}{2} \pm \sqrt{\left\{\frac{M_{11} + M_{22}}{2}\right\}^2 - 1}\right\}\right)$$

 \implies komplex wave vector \implies attenuation

 \implies no propagation in this specific parameter region

 \implies evanescently decaying field solution

 \implies infinite number of such regions $(n = 1....\infty)$

 \Rightarrow called photonic band gaps

 \Rightarrow bounds given by

$$\Re\{K(k_x,\omega)\Lambda\} = n\pi \quad \rightarrow \quad K(k_x,\omega) = n\pi/\Lambda$$
$$\Im\{K(k_x,\omega)\Lambda\} = 0$$

 \implies outside the band gaps propagating exist solutions

 \Rightarrow differ largely in their properties from free space modes

visualisation of dispersion relation for $k_x=0$ using dimensionless quantities

 \blacktriangleright visualisation of dispersion relation for $k_x=0$ using dimensionless quantities

reduced band structure (Brillouin zone)

projection of the bands for oblique incidence

 n_1 =1.0, d_1 =0.33 Λ n_2 =1.5, d_2 =0.67 Λ

n₁=1.4, d₁=0.5Λ n₂=3.4, d₂=0.5Λ

21

Properties of periodic systems attenuation for a a binary systems $\cos(K(k_x,\omega)\Lambda) = \frac{M_{11} + M_{22}}{2}$ $= \cos\left(\frac{\omega}{c}n_1d_1\right)\cos\left(\frac{\omega}{c}n_2d_2\right) - \frac{1}{2}\left(\frac{n_2}{n_1} + \frac{n_1}{n_2}\right)\sin\left(\frac{\omega}{c}n_1d_1\right)\sin\left(\frac{\omega}{c}n_2d_2\right)$ in the first forbidden band with $K\Lambda = \pi + ix$ $\frac{\omega_B}{c}n_1d_1 = \frac{\omega_B}{c}n_2d_2 = \frac{\pi}{2} \quad \implies \text{ lambda-quarter plates}$ $\cosh x_{\mathrm{ma}} = \frac{1}{2} \left(\frac{n_2}{n_1} + \frac{n_1}{n_2} \right) \qquad x_{\mathrm{ma}} = \Lambda \Im \left\{ K \right\}_{\mathrm{ma}} \approx \frac{n_2 - n_1}{n_2 + n_1}$ attenuation proportional to index contrast $\Delta \omega_{\rm gap} \approx \frac{2\omega_B}{\pi} x_{\rm ma} = \frac{2\omega_B}{\pi} \Lambda \Im(K)_{\rm ma}$ width of the gap spectral width proportional to index contrast 22

Theoretical Optics

1D Photonic Crystals

Prof. Carsten Rockstuhl

