Theoretical Particle Physics I

Winter term 24/25 Matthias Steinhauser

I. Some basics

- 1. Quantum mechanics and quantum field theory
- 2. Natural units
- 3. Lorentz transformation and Poincaré invariance
- 4. Dirac equation and its solutions
- II. Lagrange densities and Symmetries
 - 1. Lagrange and Hamilton formalism in classical mechanics
 - 2. Transition to continuous systems
 - 3. Noether theorem
 - 4. Lagrange densities

III. Field quantization

- 1. Motivation
- 2. Repetition: Heisenberg picture in quantum mechanics
- 3. Quantising the scalar field
- 4. Quantising spinor fields
- 5. Quantisation of spin-1 fields

IV. Perturbation theory

- 1. Up to now: free theory
- 2. Interaction terms in the Lagrange density
- 3. QED as abelian gauge theory
- 4. Interaction picture
- 5. Time evolution of states: S matrix
- 6. Wick theorem
- 7. Computation of S matrix elements
- 8. Feynman rules for QED
- 9. From \mathcal{L} to Feynman rules: a recipe

- V. Fundamental processes in QED
 - 1. Cross sections and decay rates
 - 2. $2 \rightarrow 2$ processes
 - 3. $|\mathcal{M}|^2$
 - 4. Compton scattering
 - 5. Muon pair production
 - 6. Bhabha scattering
 - 7. Scattering on external fields
 - 8. Elastic electron-proton scattering
- VI. Spontaneous symmetry breaking
 - 1. Goldstone model
 - 2. Goldstone theorem
 - 3. Higgs model
- VII. Decay rates
 - 1. 2-particle phase space
 - 2. Higgs boson decay
 - 3. 3-particle phase space
- VIII. Fermi theory of weak interaction
 - 1. Introduction
 - 2. Muon decay
 - 3. Electron-neutrino scattering
 - 4. Charged pion decay
 - 5. Unitarity and the W boson