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Problem 1 - One-dimensional chain of springs (100 Points)

In this problem we want to show how the formalism of quantum field theory naturally emerges from a
known, discrete, system, once the continuum limit is taken. To this end, we will consider the case of a
one-dimensional chain of N springs connected to each other. We will quantize this system for finite values
of N and then consider the limit N →∞, i.e. the continuum limit, see Figure 1.
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Exercise 1. Discrete and continuous models of an elastic rod

We consider a one-dimensional array of N particles connected by elastic springs with spring force
constant . Let us assume that all the particles have the same mass m and that, at rest, their
relative distance is a. By qi(t), i = 1, . . . N , we denote their position relative to the equilibrium.
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a) Derive the Lagrangian L(qi(t), q̇i(t)) of this system in the limit of large N .

b) Compute the Euler-Lagrange equations.

c) Take the limit a ! 0 of the Lagrangian and the Euler-Lagrange equations that you ob-
tained in a) and b). As in the lecture, denote by �(t, ~x) the vibration amplitudes, by µ
the mass density lima!0

m
a , and by Y Young’s modulus lima!0(a) .

d) Check that you obtain the same result if you derive the Euler-Lagrange equations directly
from the Lagrangian of an elastic rod.

Exercise 2. Equations of motion of electrodynamics

In electrodynamics the Lagrangian density has the following form:

L = �1

4
Fµ⌫F

µ⌫ � jµAµ

where Fµ⌫ := @µA⌫ � @⌫Aµ and jµ is some external current density.

Using the Euler-Lagrange equations (see lecture 1) and the expression for L above, derive the
equations of motion of the electromagnetic field.

Exercise 3. Lorentz transformations

Consider a classical field �(x) and assume its Lagrangian density is invariant under (infinitesimal)
Lorentz tranformation x ! x + �x, with:

�xµ = !µ
⌫ x⌫ (1)

where !µ
⌫ is an infinitesimal, antisymmetric constant matrix: !µ⌫ = �!⌫µ. Apply Noether’s

Theorem to find the conserved current and charge, writing them in terms of the conserved
energy-momentum tensor Tµ⌫ .

Hint. Use the Euler-Lagrange field equations.
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Figure 1: One-dimensional array of springs

1. (20 Points) Let us start by considering a very well known system, the one-dimensional harmonic
oscillator. The Lagrangian is given by

L =
m

2

(
ẋ2 − ω2x2

)
, with ẋ =

d x

d t
. (1)

a) Derive the expression for the conjugate momentum p and for the Hamiltonian H.

b) Show how the system can be quantized by introducing creation and annihilation operators a†, a
defined as

x =

√
~

2mω

(
a+ a†

)
, p = −i

√
mω~

2

(
a− a†

)
.

Write the commutation relations between a, a†, check that those commutation relations give
correct commutation relations for x and p, express the Hamiltonian H in terms of a, a† and find
its eigenvalues.

2. Let us consider now the system in Figure 1. Let us assume that every particle has a mass m and
that the displacement of the particle j from its equilibrium position is denoted as qj/

√
m. We assume

that each particle can only move along the line of the array, so that transverse displacements are not
allowed. Assuming that every particle interacts only with its two neighbors and that the displacements
are small enough (harmonic approximation), the Lagrangian of the system can be written as

L =
1

2

N∑
j=1

q̇2j −
ν2

2

N−1∑
j=1

(qj+1 − qj)2 , where ν is the stiffness of the springs. (2)
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a) (5 Points) Show that, imposing periodic boundary conditions on the system

qN+1(t) = q1(t) , q̇N+1(t) = q̇1(t) ,

the classical equations of motion are

q̈j(t) = ν2 [qj+1(t)− 2 qj(t) + qj−1(t)] , ∀j = 1, N . (3)

b) (5 Points) We are looking for the solutions that are harmonic functions of time. Such a normal
mode solution of Eq. (3) qj(t) with frequency ω can be written as

qj(t) = <{Ae−i(K j−ωt)} , (4)

where A is a normalization constant, ω does not depend on j, and K is a constant which can
take only a discrete set of values. Show that periodic boundary conditions require

K =
2πα

N
, with α = 0, 1, ..., N − 1 .

c) (5 Points) Using the exact form of the normal modes together with Eq. (3), show that, for every
given value of α, the frequency is

ωα = 2ν
∣∣∣sin πα

N

∣∣∣ ,
and that the solution for a given normal mode of frequency α can be written as

qαj (t) = <{aαj eiωt} , with aαj = Ae−i2πα j/N . (5)

d) (5 Points) Use the derived expressions for the normal modes to show that the coefficients aαj
satisfy the orthogonality condition

N∑
j=1

aα∗j aβj = Cj δαβ , where Cj is a constant.

Show that imposing the normalization condition Cj = 1, i.e.

N∑
j=1

aα∗j aβj = δαβ ,

fixes A = 1/
√
N in Eq. (5).

e) (5 Points) Again, use the derived expressions for the normal modes to show that aαj satisfies a
completeness relation

N−1∑
α=0

aα∗j aαk = δjk . (6)

f) (10 Points) Given the normal mode solutions qαj (t), an arbitrary motion of the particle j will be
written as

qj(t) = <
{
N−1∑
α=0

cα a
α
j e

iωα t

}
. (7)

Show that by introducing the normal coordinates

Qα(t) =

N∑
j=1

aαj qj(t) (8)

the Lagrangian (2) becomes equivalent to the Lagrangian of N independent harmonic oscillators,
namely:

L =
1

2

N−1∑
α=0

(
Q̇∗αQ̇α − ω2

αQ
∗
αQα

)
. (9)
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g) (10 Points) Explain how to use Eq. (9) together with the results in point a) in order to quantize
the system. What is the commutation relation between Qα and its conjugate momentum Pα ?

h) (10 Points) Use the completeness relation (6) in order to invert Eq. (8) and derive the expressions
for q̂j and its conjugate momentum p̂j in terms of the Qα and Πα. We put a hat on q̂j and p̂j
to recall that they are now operators. Use these results to show that

[p̂j , q̂k] = i ~ δjk . (10)

i) (10 Points) Let us consider now the continuum limit for this system. Given a particular mode
of motion the phase difference between adjacent particles is 2πα/N . One wave length will
contain N/α particles and if their equilibrium separation is d, the wave length can be written
as λ = Nd/α. In the limit when the wave length λ is much larger than the relative spacing d,
one can imagine to describe the system as a continuum. In order to do this, introduce the wave
number

k =
2π

λ
,

and the equilibrium position of a given particle can be written as xj = j d. With these notations
we have

ajk =
1√
N
e−ikxj ,

Qk =
1√
N

N∑
j=1

qj e
−ikxj , qj =

1√
N

N∑
k=1

Qke
ikxj , (11)

and the continuum limit can be taken when kd � 1 . In this limit qj and qj+1 become nearly
equal the displacement can be seen as a continuous function of the position x on the line, namely

qj = q(xj) ≈
√
mφ(x) ,

where the
√
m is needed to account for the normalization we have chosen to define the qj in (2).

Using the formal replacement

N∑
j=1

(...)→ N

L

∫ L

0

(...)dx , where L is the length of the string ,

show that the Lagrangian in Eq. (2) can be written as

L =
ρ

2

∫ L

0

(
∂φ

∂t

)2

dx− ρc2

2

∫ L

0

(
∂φ

∂x

)2

dx =

∫ L

0

{
ρ

2

(
∂φ

∂t

)2

− ρc2

2

(
∂φ

∂x

)2
}
dx , (12)

where we introduced the mass density ρ = m/d and the constant c = ν d.

j) (10 Points) Write down the Euler-Lagrange equation for the field φ that follows from the La-
grangian Eq.(12) and use it to give a physical interpretation of the constant c.

k) (5 Points) Suppose you want to quantize the continuous system described by the Lagrangian
Eq.(12). Given the relation between the field φ(xi) and the original discrete coordinate qi
described in part i), and the standard discrete quantization condition Eq. 10, can you guess the
quantization condition for the field φ(x) and its conjugate momentum π(x) that needs to be
applied in the continuum limit?
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