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Problem 1 - Kinematics of 2→ 2 processes (60 points)

In this problem we want to study the kinematics of a 2 → 2 scattering process in terms of the so-called
Mandelstam variables s, t, u.

1. We start with a simple case and consider a generic process which involves the interaction of 4 massless
particles of momenta p1, p2, p3, p4 with p2j = 0. To keep the discussion general we consider all four
particles to be incoming (see figure). This process can be written as

p1 + p2 + p3 + p4 → 0 . (1)

Written in this way, the process is non-physical, in the sense that it cannot happen in reality, but we
will use it to establish the notation. We define the Mandelstam variables as

s = (p1 + p2)2 , t = (p1 + p3)2 , u = (p1 + p4)2 = (p2 + p3)2 . (2)

1a) (5 points) Explain why the Mandelstam variables can be computed in any reference frame and
prove that

s+ t+ u = 0 .

1b) (10 points) Consider a physical process where particles p1 and p2 produce particles p3 and p4

p1 + p2 → p3 + p4 . (3)

Since the incoming total momentum is (p1 + p2)2 = s, this is called the s-channel process.

Go to the center-of-mass frame and introduce the scattering angle θ defined as

~p1 · ~p3 = |~p1||~p3| cos θ ,

and the total energy p01 + p02 = W . Express s, t, u in terms of W and θ and prove that for the
process (3) one always has

s > 0 , t < 0 , u < 0 . (4)

1c) (5 points) Draw the physical region allowed for the process in the s− t plane. Note that for all
allowed values of s and t, one must also have u < 0 . This type of plot is referred to as the Dalitz
plot for a particular process.

1d) (10 points) Consider now the related process in the t-channel. In this case, p1 and p3 produce
p2 and p4

p1 + p3 → p2 + p4 . (5)

Draw the physical region allowed for this process in the same s− t plane of point 1c).

2. We generalise the preceeding question and consider the process

p1 + p2 + p3 + p4 → 0 ,

where now two particles, say 3 and 4, are massive, i.e. p21 = p22 = 0 , p23 = p24 = m2.
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2a) (5 points) Introduce the three Mandelstam variables and prove that in this case

s+ t+ u = 2m2 .

2b) (10 points) Study the physical s-channel process

p1 + p2 → p3 + p4

in the center-of-mass frame by introducing the scattering angle θ and the total center-of-mass
energy W . What are the physically allowed values for θ and W?

2c) (10 points) Express s, t, u in terms of W , θ and m2 . What are the allowed values for s, t and u?
Draw the physical region for this process in the s− t plane. Recall again that the values allowed
for s, t are constrained also from the values of u = 2m2 − s− t.

2d) (5 points) Similar to the massless case, consider the t-channel process

p1 + p3 → p2 + p4 (6)

and draw the physical region allowed for this process on the same s− t plane of point 2c).

Problem 2 - Iterative construction of 3-particle phase space
(40 points)

In the following exercise we want to calculate the 3-body phase space iteratively starting from the 2-body
phase space.

0. (5 points) Prove that ∫
d3~p

(2π)32ωp
=

∫
d4p

(2π)4
(2π)θ(p0) δ(p2 −m2) . (7)

where ωp =
√
~p2 +m2,

1. (10 points) Start by considering a system of two particles of masses m1 and m2, total 4-momentum
Pµ = kµ1 + kµ2 and the total center-of-mass energy W , with PµPµ = s = W 2 .

The 2-body phase space of this system is defined as

Φ2(s,m2
1,m

2
2) =

∫
d3~k1

(2π)32ωk1

∫
d3~k2

(2π)32ωk2
(2π)4 δ(4)(P − k1 − k2) . (8)

Go to the center-of-mass frame and use Eq. (7) to show that

Φ2(s,m2
1,m

2
2) =

1

8π s

√
λ(s,m2

1,m
2
2) , (9)

where λ(a, b, c) is called Källen function and is defined as

λ(a, b, c) = a2 + b2 + c2 − 2 a b− 2 a c− 2 b c .

2. Consider now a system of 3 particles of masses m1, m2 and m3, total momentum Pµ = (k1+k2+k3)µ

and total center-of-mass energy W =
√
PµPµ =

√
s. The 3-body phase space is defined as

Φ3(s,m2
1,m

2
2,m

2
3) =

∫
d3~k1

(2π)32ωk1

∫
d3~k2

(2π)32ωk2

∫
d3~k3

(2π)32ωk3
(2π)4δ4(P − k1 − k2 − k3) . (10)

We want to evaluate it iteratively starting from the result in Eq. (9).
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2a) (5 points) Start by considering the two particles 2 and 3 with masses m2 and m3. Suppose their
total momentum is q = k2 + k3 and their invariant mass is q2 = M2 . Prove that the physically
allowed values of M2 are (m2 +m3)2 ≤M2 ≤ (

√
s−m1)2.

2b) (5 points) Prove that∫ (
√
s−m1)

2

(m2+m3)2

dM2

2π

∫
d4q

(2π)4
(2π)θ(q0)δ(q2 −M2)(2π)4δ4(q − k2 − k3) = 1 . (11)

2c) (10 points) Multiply the definition of the 3-body phase space, Eq. (10), by the left hand side of
Eq. (11), and show that

Φ3(s,m2
1,m

2
2,m

2
3) =

∫ (
√
s−m1)

2

(m2+m3)2

dM2

2π
Φ2(s,M2,m2

1)Φ2(M2,m2
2,m

2
3)

=
1

8πs

∫ (
√
s−m1)

2

(m2+m3)2

dM2

2π

1

8πM2

√
λ(s,M2,m2

1)λ(M2,m2
2,m

2
3) . (12)

The result in Eq. (12) shows that the 3-body phase space can be seen as the product of the
2-body phase space of particles m2, m3, times the 2-body phase space of particle m1 together
with the system of the other two particles of invariant mass M2, integrated over the physically
allowed values of M2.

2d) (5 points) Show that in case of two masless and one massive particle, e.g.

m1 = m2 = 0 , and m3 = m,

the result for the three-particle phase-space Eq. (12) simplifies dramatically. Explicitly compute
Φ3(s, 0, 0,m2) in this case.
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