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Phonons (100 Points)

Exercise 1.1: (20 points) A one-dimensional harmonic oscillator is described by the Lagrangian

L =
1

2
ẋ2 − ω2

2
x2, ẋ =

d x

d t
(1)

(a) (5 points) Determine the canonical momentum p and the Hamiltonian H.

(b) (10 points) Creation and annihilation operators a, a† are defined by the following equations

x =

√
1

2ω

(
a+ a†

)
, p = −i

√
ω

2

(
a− a†

)
. (2)

Express the Hamiltonian H found in point (a) in terms of a, a†, satisfying commuting relation[
a, a†

]
= 1. Work recursively to determine its eigenvalues and eigenvectors starting from a

ground state |0⟩ which satisfies the equation a|0⟩ = 0.

(c) (5 points) Show that a(t) = ae−iωt and a†(t) = a†eiωt provide solutions of time evolution
equation for the operators a and a†

i
d

dt
a = [a,H], i

d

dt
a† = [a†, H]. (3)

Exercise 1.2: (50 points) Consider a system of coupled oscillators with the nearest-neighbors
interactions (see Fig.1), described by the Lagrangian with the periodic boundary conditions

L =
1

2

N∑
j=1

q̇2j −
ν2

2

N∑
j=1

(qj+1 − qj)
2 , qN+1(t) = q1(t), q̇N+1(t) = q̇1(t). (4)

The generalized coordinates qj are the displacements of j-th mass, normalized to a square root of
the mass m, from the stationary point xj = d · j.

m m m. . . . . .

d d
qi−1(t) qi(t) qi+1(t)

x

Figure 1: One-dimensional chain of springs

(a) (5 points) Use the Lagrangian in Eq. (4) to derive the classical equations of motion

q̈j(t) = ν2 [qj−1(t)− qj(t)] + ν2 [qj+1(t)− qj(t)] (5)
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(b) (5 points) General solution of Eq. (5) can be written as a sum of particular solutions (referred to
as “normal modes”). All particles in a normal mode solution oscillate with the same frequency.
We label normal modes with a parameter α = 1, ..., N and write

qj(t) =
∑
α

Re qαj (t) =
∑
α

Re
{
aαj e

iωαt
}
, (6)

Use periodic boundary conditions (4) and equations of motion to show that eigenfrequencies
ωα and eigenamplitudes aαj of normal modes are described by the following equations

ωα = 2ν
∣∣∣sin απ

N

∣∣∣ , aαj = C · e−iKj , K =
2πα

N
. (7)

(c) (5 points) We can choose eigenamplitudes of normal modes to satisfy the orthogonality
condition

N∑
j=1

aα∗j aβj = δαβ. (8)

Use this condition to determine the constant C in Eq. (7).

(d) (5 points) Show that the completeness relation (7):

N∑
α=1

aα∗j aαk = δjk, (9)

is satisfied by eigenamplitudes.

(e) (20 points) Introduce normal coordinates

Qα(t) =
N∑
j=1

aαj qj(t), (10)

and show that the Lagrangian Eq. (4) can be written as follows

L =
1

2

N∑
α=1

(
Q̇∗

αQ̇α − ω2
αQ

∗
αQα

)
. (11)

Note that Eq. (11) implies that normal coordinates are independent.

(f) (10 points) Use Eq. (11) to construct the conjugate momentum Πα for the normal coordinate
Qα. We can quantize the system in Eq. (11) by requiring that Qα,Πβ satisfy

[Qα,Πβ] = ih̄δαβ. (12)

Use completeness relation (9) to invert Eq.(10) and express q̂j and p̂j in terms of Qα and Πα.
Verify using Eq. (12) that [q̂j , p̂k] = iδjk.

Exercise 1.3: (30 points) Finally, we discuss the continuum limit of the system describe by
Eq. (4). To do this, we note that, as follows from Eq.(7), the phase difference between adjacent
particles for a motion described by a normal mode α is 2πα

N . We can then define the wave length

λ = Nd
α and the wave number k = 2π

λ . We can now use k instead of α to label the modes. We write

ajk =
1√
N

e−ikxj , Qk =
1√
N

N∑
j=1

qje
−ikxj , qj =

1√
N

N∑
k=1

Qke
ikxj . (13)

We define the continuum limit as kd ≪ 1. In this limit, all displacements qj can be described by
a continuous function φ(x):

qj = q(xj) → φ(x),
qj+1 − qj

d
→ ∂φ

∂x
,

N∑
j=1

→ 1

d

L∫
0

dx (14)
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(a) (15 points) Introduce the density ρ = 1/d, and use Eq. ((14)) to show that the Lagrangian
(4) can be written as

L =

L∫
0

dx

{
ρ

2

(
∂φ

∂t

)2

− ρc2

2

(
∂φ

∂x

)2
}

(15)

Give explicitly the parameter c in terms of the parameters of the original Lagrangian (4).

(b) (15 points) Derive the Euler-Lagrange equation for the field φ following from the Eq. (15)
and give their general solutions. What is the role of the parameter c in Eq. (15)?
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