Theoretische Teilchenphysik I

V: Prof. Kirill Melnikov, U: Dr. Andrey Pikelner, U: Dr. Chiara Signorile-Signorile

Phonons (100 Points)

Exercise 1.1: (20 points) A one-dimensional harmonic oscillator is described by the Lagrangian

$$L = \frac{1}{2}\dot{x}^2 - \frac{\omega^2}{2}x^2, \quad \dot{x} = \frac{dx}{dt}$$
(1)

- (a) (5 points) Determine the canonical momentum p and the Hamiltonian H.
- (b) (10 points) Creation and annihilation operators a, a^{\dagger} are defined by the following equations

$$x = \sqrt{\frac{1}{2\omega}} \left(a + a^{\dagger} \right), \quad p = -i\sqrt{\frac{\omega}{2}} \left(a - a^{\dagger} \right).$$
 (2)

Express the Hamiltonian H found in point (a) in terms of a, a^{\dagger} , satisfying commuting relation $[a, a^{\dagger}] = 1$. Work recursively to determine its eigenvalues and eigenvectors starting from a ground state $|0\rangle$ which satisfies the equation $a|0\rangle = 0$.

(c) (5 points) Show that $a(t) = ae^{-i\omega t}$ and $a^{\dagger}(t) = a^{\dagger}e^{i\omega t}$ provide solutions of time evolution equation for the operators a and a^{\dagger}

$$i\frac{d}{dt}a = [a,H], \quad i\frac{d}{dt}a^{\dagger} = [a^{\dagger},H].$$
(3)

Exercise 1.2: (50 points) Consider a system of coupled oscillators with the nearest-neighbors interactions (see Fig.1), described by the Lagrangian with the periodic boundary conditions

$$L = \frac{1}{2} \sum_{j=1}^{N} \dot{q}_{j}^{2} - \frac{\nu^{2}}{2} \sum_{j=1}^{N} \left(q_{j+1} - q_{j} \right)^{2}, \quad q_{N+1}(t) = q_{1}(t), \quad \dot{q}_{N+1}(t) = \dot{q}_{1}(t).$$
(4)

The generalized coordinates q_j are the displacements of *j*-th mass, normalized to a square root of the mass *m*, from the stationary point $x_j = d \cdot j$.

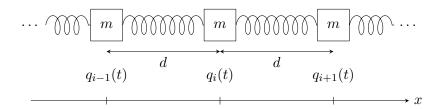


Figure 1: One-dimensional chain of springs

(a) (5 points) Use the Lagrangian in Eq. (4) to derive the classical equations of motion

$$\ddot{q}_{j}(t) = \nu^{2} \left[q_{j-1}(t) - q_{j}(t) \right] + \nu^{2} \left[q_{j+1}(t) - q_{j}(t) \right]$$
(5)

(b) (5 points) General solution of Eq. (5) can be written as a sum of particular solutions (referred to as "normal modes"). All particles in a normal mode solution oscillate with the same frequency. We label normal modes with a parameter $\alpha = 1, ..., N$ and write

$$q_j(t) = \sum_{\alpha} \operatorname{Re} q_j^{\alpha}(t) = \sum_{\alpha} \operatorname{Re} \left\{ a_j^{\alpha} e^{i\omega_{\alpha}t} \right\},$$
(6)

Use periodic boundary conditions (4) and equations of motion to show that eigenfrequencies ω^{α} and eigenamplitudes a_i^{α} of normal modes are described by the following equations

$$\omega_{\alpha} = 2\nu \left| \sin \frac{\alpha \pi}{N} \right|, \quad a_{j}^{\alpha} = C \cdot e^{-iKj}, \quad K = \frac{2\pi\alpha}{N}.$$
(7)

(c) (5 points) We can choose eigenamplitudes of normal modes to satisfy the orthogonality condition

$$\sum_{j=1}^{N} a_j^{\alpha *} a_j^{\beta} = \delta_{\alpha\beta}.$$
(8)

Use this condition to determine the constant C in Eq. (7).

(d) (5 points) Show that the completeness relation (7):

$$\sum_{\alpha=1}^{N} a_j^{\alpha*} a_k^{\alpha} = \delta_{jk},\tag{9}$$

is satisfied by eigenamplitudes.

(e) (20 points) Introduce normal coordinates

$$Q_{\alpha}(t) = \sum_{j=1}^{N} a_j^{\alpha} q_j(t), \tag{10}$$

and show that the Lagrangian Eq. (4) can be written as follows

$$L = \frac{1}{2} \sum_{\alpha=1}^{N} \left(\dot{Q}_{\alpha}^* \dot{Q}_{\alpha} - \omega_{\alpha}^2 Q_{\alpha}^* Q_{\alpha} \right).$$
(11)

Note that Eq. (11) implies that normal coordinates are independent.

(f) (10 points) Use Eq. (11) to construct the conjugate momentum Π_{α} for the normal coordinate Q_{α} . We can quantize the system in Eq. (11) by requiring that Q_{α}, Π_{β} satisfy

$$[Q_{\alpha}, \Pi_{\beta}] = i\hbar \delta_{\alpha\beta}.$$
 (12)

Use completeness relation (9) to invert Eq.(10) and express \hat{q}_j and \hat{p}_j in terms of Q_{α} and Π_{α} . Verify using Eq. (12) that $[\hat{q}_j, \hat{p}_k] = i\delta_{jk}$.

Exercise 1.3: (30 points) Finally, we discuss the *continuum limit* of the system describe by Eq. (4). To do this, we note that, as follows from Eq.(7), the phase difference between adjacent particles for a motion described by a normal mode α is $\frac{2\pi\alpha}{N}$. We can then define the wave length $\lambda = \frac{Nd}{\alpha}$ and the wave number $k = \frac{2\pi}{\lambda}$. We can now use k instead of α to label the modes. We write

$$a_{jk} = \frac{1}{\sqrt{N}} e^{-ikx_j}, \quad Q_k = \frac{1}{\sqrt{N}} \sum_{j=1}^N q_j e^{-ikx_j}, \quad q_j = \frac{1}{\sqrt{N}} \sum_{k=1}^N Q_k e^{ikx_j}.$$
 (13)

We define the *continuum limit* as $kd \ll 1$. In this limit, all displacements q_j can be described by a continuous function $\varphi(x)$:

$$q_j = q(x_j) \to \varphi(x), \quad \frac{q_{j+1} - q_j}{d} \to \frac{\partial \varphi}{\partial x}, \quad \sum_{j=1}^N \to \frac{1}{d} \int_0^L dx$$
 (14)

(a) (15 points) Introduce the density $\rho = 1/d$, and use Eq. ((14)) to show that the Lagrangian (4) can be written as

$$L = \int_{0}^{L} dx \left\{ \frac{\rho}{2} \left(\frac{\partial \varphi}{\partial t} \right)^{2} - \frac{\rho c^{2}}{2} \left(\frac{\partial \varphi}{\partial x} \right)^{2} \right\}$$
(15)

Give explicitly the parameter c in terms of the parameters of the original Lagrangian (4).

(b) (15 points) Derive the Euler-Lagrange equation for the field φ following from the Eq. (15) and give their general solutions. What is the role of the parameter c in Eq. (15)?