Theoretische Teilchenphysik I

V: Prof. Kirill Melnikov, U: Dr. Andrey Pikelner, U: Dr. Chiara Signorile-Signorile

Exercise Sheet 5 SS-2023 Due date: 23.05.23

Non-relativistic limit of the Dirac equation (50 Points)

The goal of this exercise is to discuss solutions of the Dirac equation for the massive fermion in the (non-relativistic) limit when the fermion's three-momentum is much smaller than its mass, i.e. $|\vec{p}| \ll m$ or, equivalently, when its velocity is small compared to the speed of light.

In the non-relativistic limit, the energy of the fermion can be approximated by

$$p_0 = \sqrt{m^2 + \vec{p}^2} = m + \frac{\vec{p}^2}{2m} + \mathcal{O}\left(\frac{1}{m^2}\right)$$
(1)

To derive the non-relativistic limit of the Dirac equation it is convinient to factor out the mass dependent phase from the four component Dirac spinor using

$$\psi(t,\vec{x}) \equiv e^{-imt} \begin{pmatrix} \chi(t,\vec{x}) \\ \eta(t,\vec{x}) \end{pmatrix},\tag{2}$$

Where now $\chi(x)$ and $\eta(x)$ are two-component spinors.

Exercise 5.1: (10 points) To study non-relativistic limit, it is useful to work with a different representation of gamma matrices, the so-called Dirac representation. The gamma matrices in this representation read

$$\gamma^{0} = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}, \quad \gamma^{i} = \begin{pmatrix} 0 & \sigma_{i} \\ -\sigma_{i} & 0 \end{pmatrix}.$$
(3)

Show that the above set of four matrices satisfy

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}.$$
(4)

Find a unitary matrix U such that

$$\gamma_W^\mu = U \gamma^\mu U^\dagger,\tag{5}$$

where γ_W^{μ} are the gamma matrices in the Weyl representation (given in the script). **Hint:** assume U to be real 4×4 block matrix with 2×2 blocks.

Exercise 5.2: (20 points) Consider the non-relativistic limit of the Dirac equation for the field $\psi(x)$. Start by deriving a system of equations for fields $\chi(x)$ and $\eta(x)$ defined in Eq. (2). Assuming that in the considered limit $i\partial\eta(t, \vec{x})/\partial t \ll m\eta$, eliminate the field $\eta(x)$ from the system of equations and show that the field $\chi(x)$ satisfies the following equation

$$i\frac{\partial}{\partial t}\chi(x) = \frac{1}{2m} \left(i\,\vec{\nabla}\cdot\vec{\sigma}\right)^2\chi(x) \tag{6}$$

Exercise 5.3: (20 points) As we will learn later, to couple the Dirac fermion to the external electromagnetic field, we need to write

$$(i\gamma_{\mu}D^{\mu}+m)\Psi(x) = 0, \tag{7}$$

where

$$iD_t = i\partial_t - e\phi, \quad i\vec{D} = i\vec{\nabla} + e\vec{A},$$
(8)

and ϕ and \vec{A} are the electric potential and the vector potential.

Follow the previous exercise and show that in the non-relativistic limit the Dirac fermion coupled to the electormagnetic field satisfies the following (Pauli) equation

$$i\partial_t \chi(x) = \left[\frac{1}{2m} \left(i \vec{D}\right)^2 - g \frac{e}{2m} \frac{\vec{\sigma} \cdot \vec{B}}{2} + e\phi\right] \chi(x),\tag{9}$$

where we introduced the magnetic field $\vec{B} = \vec{\nabla}A$. Determine the value of the factor g. **Hint**: use the following identity: $\sigma^k \sigma^n = \delta^{kn} + i \cdot \epsilon^{knl} \sigma^l$.

Majorana fermions (50 Points)

Exercise 5.4: (20 points) In the lecture, the Lorentz transformations of spinors were discussed. We have shown that two-componet spinors in the representations (1/2, 0) (ψ_L) and (0, 1/2) (ψ_R) transform differently.

(a) (10 points) Show, that if spinor ψ_L transforms according to (1/2, 0) representation rule, the spinor $\sigma_2 \psi_L^*$ transforms according to (0, 1/2) representation rule.

Hence, the four-component Dirac spinor

$$\psi = \lambda \begin{pmatrix} \psi_L \\ i\sigma_2 \psi_L^* \end{pmatrix}$$
(10)

is a valid spinor in (1/2, 1/2) representation. In the above equation λ is a constant factor to be determined later.

(b) (10 points) In the above ansatz for ψ , ψ_L is the only (two-component) complex spinor that can be adjusted to satisfy the Dirac equation whereas the Dirac equation mixes up all four components of a Dirac spinor. Show that by choosing ψ_L in the right way, ψ can satisfy the four-component Dirac equation.

Exercise 5.5: (30 points) As we already mentioned in the first excercise of this sheet, it is possible to use various representations of γ -matrices. Representations are related to each other by unitary transformations

$$\tilde{\gamma}^{\mu} = U \gamma^{\mu} U^{\dagger} \tag{11}$$

Consider a unitary transformation with the following matrix, where γ^{μ} are defined in Eq.(3)

$$U = \frac{1}{\sqrt{2}} \gamma_0 \left(1 + \gamma_2 \right).$$
 (12)

(a) (10 points) Compute matrices $\tilde{\gamma}^{\mu}$. Show that all these matrices are imaginary, i.e.

$$\tilde{\gamma}^{\mu,*} = -\tilde{\gamma}^{\mu}.\tag{13}$$

(b) (10 points) Consider the Dirac equation

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi(x) = 0.$$
(14)

Using the matrix U, rewrite this equation as

$$(i\tilde{\gamma}^{\mu}\partial_{\mu} - m)\,\nu(x) = 0,\tag{15}$$

where $\nu(x) = U\psi(x)$. Show that the spinor $\nu(x)$ can be choosen to be real by a suitable choice of λ .

(c) (10 points) It follows from the above discussion that Majorana fermions can be described by real-valued spinors. Consider the Dirac equation for a Majorana fermion and couple it to the external electromagnetic field introduced in Eq.(8). Argue that the only consistent value for the electric charge e in this case is e = 0 so that a consistent theory of charged Majorana fermions does not exist.