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Furry’s theorem (40 points)

In this exercise, we study the interaction of vector and axial currents with a massive fermion.
Consider the interaction of three vector currents. You can have a physical example by studying the
light-by-light scattering γγ → γ, where γ represents a photon.

(a) (5 points) Can you find a term in the Standard Model Lagrangian describing the interaction
of three photons at tree level?

(b) (10 points) Consider the scattering γγ → γ at the first non-trivial order in the coupling
constant. Draw the Feynman diagrams that contribute to the process and specify the Feynman
rules that you need to compute the corresponding matrix element. Write down the matrix
element for the process.

(c) (10 points) Argue why the process cannot occur. Hint: focus on the Dirac trace that appears
in the numerator of the matrix element.

(d) (5 points) Consider the case where instead of photon you have three axial currents. Write the
vertices you need to account for to compute the corresponding matrix element when mediated
by a fermion loop.

(e) (10 points) Compute the matrix element under the assumptions of the previous questiona and
verify whether it vanishes or not.

Light-by-light scattering (60 points)

We have seen in the previous exercise that interaction between three photons is forbidden in quantum
electrodynamics. We will now check that the interaction between the four photons is actually
possible. Consider the process

γ(k1) + γ(k2) → γ(k3) + γ(k4). (1)

(a) (5 points) Draw Feynman diagrams that contribute to this process (you should get three) and
write mathematical expressions for them (as integrals over the loop momentum).

(b) (20 points) Choose any diagram and study its behaviour at large values of the loop momentum.
You should find that the individual diagrams diverge. Use Pauli-Villars regularization and write
the results for all diagrams in the following way

Diagram = e4ϵµ1 ϵµ2 ϵµ3 ϵµ4 rµ1µ2µ3µ4 ln
M2

µ2
+ .., (2)

where M is the mass of Pauli-Villars regulator, µ is an arbitrary quantity with mass dimension
one and ellipses stand for M -independent terms. Compute tensor rµ1µ2µ3µ4 explicitely. Use
following replacement rules to calculate regularized integrals with loop momenta in numerator:∫

d4l
lµlν

(l2 −m2)n
→ 1

4
gµν

∫
d4l

l2

(l2 −m2)n
(3)∫

d4l
lµlν lρlσ

(l2 −m2)n
→ 1

24
(gµνgρσ + gµρgνσ + gµσgνρ)

∫
d4l

l4

(l2 −m2)n
. (4)

Hint:shift loop momenta if needed to bring integrals into the form (3) and (4).
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(c) (10 points) Show that if you sum over all diagrams, the divergent contributions identified
in the previous item cancel. Hence, we conclude that photon scattering on photons can be
uniquely computed in QED.

(d) (15 points) This effect was one of the first computed after the advent of QED (Euler-Kolber-
Heisenberg, 1935).

In case when the energy of photons is much smaller than the mass of the electron, the Euler-
Heisenberg Lagrangian reads

L =
1

8π

(
E⃗2 − B⃗2

)
+

ξ

8π

(
(E⃗2 − B⃗2)2 + 7(E⃗B⃗)2

)
, (5)

where ξ = α2/(45πm4) and E⃗ and B⃗ are “correct” electric and magnetic fields related to
vector potentials

B⃗ = ∂⃗ × A⃗, E⃗ = −∂A⃗

∂t
− ∂⃗A0. (6)

Use this Lagrangian to estimate the photon-photon scattering cross section for visible light.
In particular, show the dependence on the fine structure constant and on energies of incoming
photons (assume that scattering occurs in the center of mass frame). Estimate a free path
of a photon (visible light) that travels in a universe filled with cosmic microwave background
radiation. Assume that microwave background photons have mean energy Eγ ≃ 2.5 eV.

(e) (10 points) In addition to the electron, assume the existence of a light charged fermion with
mass ml = κme, κ ≪ 1. Find the upper bound on the parameter κ from the requirement
that the free path of the photon(now with additional interaction) is larger than the distance
traveled by light in the lifetime of the universe.

BONUS exercise 1: Green’s function (15 points)

The Green’s function of the Klein-Gordon-equation can be written in the form

G(x− y) =

∫
d4k

(2π)4
e−ik·(x−y) 1

k2 −m2
. (7)

(a) (5 points) Performing the integration over k0, we find poles of the integrand at k0 =

±
√
k⃗2 +m2. Specify how many integration paths around these poles are possible in the

complex k0-plane. Draw the pole configurations.

(b) (10 points) Show that the Green’s function

GD =

∫
d4k

(2π)4
e−ik·(x−y) 1

k2 −m2 − iϵ
(8)

can be expressed through the real (quantised) field φ and the vacuum state |0⟩ as

iGD(x− y) = −Θ(x0 − y0)⟨0|φ(y)φ(x)|0⟩ −Θ(y0 − x0)⟨0|φ(x)φ(y)|0⟩ . (9)

BONUS exercise 2: scattering amplitudes and cross-sections (35
points)

Consider the process

νµ(k) + e−(p) → νµ(k
′) + e−(p′) , (10)

2



where ν represent a neutrino, and e− an electron. The process is mediated by a neutral current,
that proceeds via the exchange of a neutral, massive Z boson, with mass mZ . The corresponding
Lagrangian reads

Lnc = − g

4 cos θW

∑
i=e,µ

ν̄i /Z(1− γ5)νi + ℓ̄i /Z(4 sin2 θW − 1 + γ5)ℓi , (11)

with θW being the Weinberg’s mixing angle, and g the coupling constant. The expression of the
relevant interaction vertices are

Zνν : −i
g

4 cos θW
(2π)4γµ(1− γ5) , (12)

Zℓℓ : −i
g

4 cos θW
(2π)4γµ(4 sin2 θW − 1 + γ5) . (13)

(a) (5 points) Draw the Feynman diagram contributing to the process in Eq. (10) at the leading
order in g, and specify the momentum flow. Write an explicit expression for the amplitude and
its conjugated counterpart.

(b) (5 points) Compute the squared amplitude, summed over spin degree of freedom, and express
it in terms of scalar products of momenta k, p, k′, p′.

(c) (5 points) Define the Mandelstam invariants s, t, u and use them to express the scalar products
of k, p, k′, p′.

(d) (10 points) Compute the differential cross section dσ/dΩ and express it in terms of the
Mandelstam invariants.

(e) (10 points) In the limit s ≪ m2
Z , assuming massless electrons, compute the total cross section

and express it as a function of the Fermi constant GF and the Weinberg angle.
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