

Theoretical Particle Physics I

Prof. Dr. Milada Margarete Mühlleitner

Exercise Sheet 2

Exercises:	Incored.	$M_{op} = 06.11.92$
Dr. Christoph Borschensky (christoph.borschensky@kit.edu)	Hand in Deadline:	Mon. $13 11 23$
M.Sc. Francisco Arco	Diequesion:	Wod/Thy $15/16$ 11 23
M.Sc. Felix Egle (felix.egle@kit.edu)	Discussion.	weu/111u, 15/10.11.25

Exercise 1: Gamma matrix representations

We consider the Dirac matrices γ^{μ} ($\mu = 0, ..., 3$) in the Weyl as well as the Dirac representation, respectively,

$$\gamma_{\chi}^{\mu} = \left(\begin{pmatrix} 0 & 1_{2 \times 2} \\ 1_{2 \times 2} & 0 \end{pmatrix}, \begin{pmatrix} 0 & \vec{\sigma} \\ -\vec{\sigma} & 0 \end{pmatrix} \right), \qquad \gamma_{D}^{\mu} = \left(\begin{pmatrix} 1_{2 \times 2} & 0 \\ 0 & -1_{2 \times 2} \end{pmatrix}, \begin{pmatrix} 0 & \vec{\sigma} \\ -\vec{\sigma} & 0 \end{pmatrix} \right), \qquad (1.1)$$

where $1_{2\times 2}$ is the 2×2 unit matrix and $\vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$ with σ_i (i = 1, 2, 3) represent the Pauli matrices.

- (a) [2P] Show that both representations obey the Clifford algebra $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$ by inserting the explicit representations separately into the anti-commutation relations.
- (b) [2P] The Weyl and Dirac representations are connected by a unitary transformation U such that

$$\gamma^{\mu}_{\gamma} = U^{\dagger} \gamma^{\mu}_{D} U$$

holds. Up to an arbitrary phase, determine the unitary 4×4 matrix U explicitly.

Hint: Remind that γ^{μ}_{γ} and γ^{μ}_{D} must have the same eigenvalues.

(c) [1P] A fifth Dirac matrix, γ^5 , can be defined by $\gamma_5 := i\gamma^0\gamma^1\gamma^2\gamma^3$. Show that the explicit forms of γ_D^5 and γ_{χ}^5 for both the Dirac and the Weyl representation, respectively, are given by

$$\gamma_D^5 = \begin{pmatrix} 0 & 1_{2 \times 2} \\ 1_{2 \times 2} & 0 \end{pmatrix}$$
, $\gamma_\chi^5 = \begin{pmatrix} -1_{2 \times 2} & 0 \\ 0 & 1_{2 \times 2} \end{pmatrix}$.

(d) [2P] We now define chirality projectors ω_{\mp} by

$$\omega_{\mp} := \frac{1_{4 \times 4} \mp \gamma^5}{2} ,$$

where ω_{-} is the left-chiral projector and ω_{+} is the right-chiral projector. By using the properties of γ^{5} , show that the ω_{\pm} obey the following projector properties:

$$\omega_{\mp}^2 = \omega_{\mp} , \qquad \omega_- \omega_+ = \omega_+ \omega_- = 0 .$$

(e) [2P] We now define a bispinor $\Psi := (\psi_L, \psi_R)$ in the Weyl basis, where ψ_L and ψ_R are left- and right-chiral spinors, respectively. Calculate the following bispinors by inserting the explicit representation of γ^5 in the Weyl basis:

$$\Psi_L := \omega_- \Psi \quad , \qquad \Psi_R := \omega_+ \Psi$$

Interpret the result and explain why the Weyl basis is often called chiral basis.

[9P]

Exercise 2: Pauli-Lubanski operator

The Pauli-Lubanski pseudovector describes the spin state of a moving particle:

$$W_{\mu} = \frac{1}{2}\tilde{M}_{\mu\sigma}P^{\sigma} = \frac{1}{2}\varepsilon_{\mu\nu\rho\sigma}M^{\nu\rho}P^{\sigma},$$

where $M^{\mu\nu}$ and P^{μ} denote the generators of the Poincaré algebra, as introduced in the lecture. Its commutation relation is given as:

$$[W_{\mu}, W_{\nu}] = -i\varepsilon_{\mu\nu\rho\sigma}W^{\rho}P^{\sigma}.$$

The simultaneous eigenvalues of P^2 and W^2 can be used to classify particles according to their mass and spin as irreducible representations of the Poincaré algebra.

We define the generalized Levi-Civita symbol in four dimensions as:

$$\varepsilon_{\mu\nu\rho\sigma} = \begin{cases} 1 \text{ if } \{\mu,\nu,\rho,\sigma\} \text{ is an odd permutation of } \{0,1,2,3\} \\ -1 \text{ if } \{\mu,\nu,\rho,\sigma\} \text{ is an even permutation of } \{0,1,2,3\} \\ 0 \text{ otherwise} \end{cases}$$

with $\varepsilon^{0123} = g^{\mu 0} g^{\nu 1} g^{\rho 2} g^{\sigma 3} \varepsilon_{\mu\nu\rho\sigma} = -\varepsilon_{0123}.$

- (a) [2P] Show that the components of W_{μ} for a particle at rest are $(0, -m\vec{J})^T$, where $\vec{J} = \vec{x} \times \vec{P}$ is the total angular momentum operator in three dimensions.
- (b) [**3P**] Prove the following identities:
 - (i) $W_{\mu}P^{\mu} = 0$,

(ii)
$$[W_{\mu}, P_{\nu}] = 0.$$

(c) [3P] Show that P^2 and W^2 are the Casimir operators of the Poincaré group, *i.e.* that they commute with all its generators,

$$[P^2, P_\mu] = [P^2, M_{\mu\nu}] = 0$$
 and $[W^2, P_\mu] = [W^2, M_{\mu\nu}] = 0$

You do not need to prove the last identity, $[W^2, M_{\mu\nu}] = 0$, as the calculation is really tedious.

(d) **[3P]** With

$$W^{2} = -\frac{1}{2}M_{\mu\nu}M^{\mu\nu}P^{2} + M_{\mu\rho}M^{\nu\rho}P^{\mu}P_{\nu},$$

show that

$$W^2 | \vec{p} = \vec{0}, m, s \rangle = -m^2 s(s+1) | \vec{p} = \vec{0}, m, s \rangle$$

where $|\vec{p} = \vec{0}, m, s\rangle$ is an eigenvector for a particle of mass m, spin s, and (vanishing) 3-momentum $\vec{p} = \vec{0}$, and $-m^2s(s+1)$ is the corresponding eigenvalue.