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Exercise 1: Pauli-Jordan distribution (I) [7P]
The commutator of a real scalar field φ(x), evaluated at two different spacetime points x and y,

[φ(x), φ(y)] ≡ i∆(x− y) ,

is also called the Pauli-Jordan distribution ∆(x− y). Using the relations for the commutator
[a(k), a†(k′)] of the annihilation and creation operators, the Pauli-Jordan distribution can be
written as

i∆(x− y) = 1
(2π)3

∫
d4k ε(k0) δ(k2 −m2) e−ik·(x−y) (1.1)

with ε(x) ≡ θ(x)− θ(−x) and the Heaviside theta function

θ(x) =

0 for x < 0
1 for x ≥ 0

.

(a) [1P] Show that the Pauli-Jordan distribution is a Lorentz-invariant quantity. It can thus
only depend on Lorentz-invariant quantities itself. Which are those?
Hint: Show first that the integration measure

dk̃ = d4k

(2π)3 δ(k
2 −m2)θ(k0) = d3k

(2π)32ωk

with ωk =
√
m2 + ~k2 is Lorentz-invariant. Is ε(k0) Lorentz-invariant? Again, we only care

about orthochronous Lorentz transformations.

(b) [6P] Prove the following properties of the Pauli-Jordan distribution, as introduced in
the lecture:

(i) (�x +m2) ∆(x− y) = (�y +m2) ∆(x− y) = 0
(ii) ∆(x− y) = −∆(y − x)

(iii) ∆(x− y)
∣∣∣
x0=y0

= 0 (i.e. ∆(x− y) vanishes for equal times)

(iv) ∆(x− y) = 0 for (x− y)2 < 0 (i.e. ∆(x− y) vanishes for spacelike distances x− y)

(v)
(
∂

∂x0 ∆(x− y)
) ∣∣∣∣∣

x0=y0
= −δ(3)(~x− ~y).

Hint: Assume that it is always possible to boost a spacelike four-vector rµ =
(
r0, ~r

)T into
a reference frame where the temporal component vanishes, i.e. rµ → r′µ = (0, ~r′)T , where
r2 = r′2 = r′µr

′µ = −~r′2 < 0 is obvious.
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Exercise 2: Pauli-Jordan distribution (II) [8P]
The momentum integral of the Pauli-Jordan distribution as introduced in exercise 1 can be
evaluated explicitly to write ∆(r) with r := x− y as:

∆(r) = m

4π
√
r2
ε(r0) θ(r2) J1(m

√
r2)− 1

2πε(r
0) δ(r2) , (2.1)

where ε(x) and θ(x) are defined in exercise 1, and J1(x) denotes the Bessel function of the
first kind. The first term in this expression denotes the case where the spacetime distance r is
timelike, i.e. r2 > 0, and the second term denotes lightlike spacetime distances, i.e. r2 = 0.
Note: To avoid confusion: while r0 in Eq. (2.1) and the following means the temporal component of
the four-vector rµ, r2 stands for the square, i.e. the invariant product r2 = rµr

µ (and not the second
spatial component of r).

(a) [2P] Show that it is possible to rewrite the integral of Eq. (1.1) of exercise 1 into the
following form:

∆(r) = − 1
2π2r̄

∫ ∞
0

dk̄
k̄

ωk
sin(k̄r̄) sin(ωkr0) , (2.2)

where we introduced the variables r̄ := |~r|, k̄ := |~k|, and ωk =
√
m2 + k̄2.

Hint: Use spherical coordinates with the integration element∫
d3k =

∫ 2π

0
dϕ

∫ 1

−1
dcosϑ

∫ ∞
0

dk̄ k̄2

and integrate over the angular variables ϕ and cosϑ.

(b) [3P] Consider the case of timelike spacetime distances, r2 > 0, evaluate the integral and
express it through the Bessel function of the first kind J1(m

√
r2) as in the first term of

Eq. (2.1).
Hint: The Bessel function of the first kind J1(x) is given by the following integral representation:

J1(x) = −2x
π

∫ ∞
1

dt
√
t2 − 1 sin(xt) for x > 0 .

Since the Pauli-Jordan distribution is Lorentz-invariant, choose a suitable reference frame for r
which simplifies the integrand of Eq. (2.2). Remind furthermore that

sin x
x

x→0−→ 1 .

Distinguish between the cases of r0 > 0 and r0 < 0 to properly track the minus sign in the
factor of ε(r0).

(c) [3P] Consider now lightlike spacetime distances, r2 = 0, and evaluate the integral of
Eq. (2.2) in this case. The integral will diverge in the ultraviolet regime, i.e. for large
momenta k̄, as denoted by the appearance of the delta distribution in the second term of
Eq. (2.1). To simplify the integration, assume thus k̄ � m.
Hint: The one-dimensional delta distribution can be represented in the following integral form:

δ(x− x0) = 1
2π

∫ ∞
−∞

dk cos (k(x− x0)) .
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Exercise 3: Quantization of the Complex Scalar Field - Continued [5P]
We again look at the Lagrangian for a complex scalar field,

L = (∂µφ†)(∂µφ)−m2φ†φ,

where we again can write φ and φ† as

φ(x) =
∫

dk̃
[
a(~k)e−ik·x + b†(~k)eik·x

]
φ†(x) =

∫
dk̃
[
b(~k)e−ik·x + a†(~k)eik·x

]
.

As in the lecture (and as you showed on the last sheet) the operators a, a†, b, b† fulfill the
commutator relations [

a(~k), a†(~k′)
]

=
[
b(~k), b†(~k′)

]
= (2π)3 2ωk δ(~k − ~k′)

all other commutators = 0.

(a) [3P] Show that the normal ordered 4-momentum operator Pµ can be written as

Pµ =
∫

d3x :T 0
µ : =

∫
dk̃ kµ

[
a†(~k) a(~k) + b†(~k) b(~k)

]
,

in terms of creation and annihilation operators.
(b) [2P] In the lecture and in the last exercise sheet we derived the conserved charge

Q =
∫

dk̃
[
a†(~k) a(~k)− b†(~k) b(~k)

]
Show that the commutation relations[

Pµ, a
†(~k)

]
= kµa

†(~k) ,
[
Pµ, a(~k)

]
= −kµa(~k) ,[

Pµ, b
†(~k)

]
= kµb

†(~k) ,
[
Pµ, b(~k)

]
= −kµb(~k) ,[

Q, a†(~k)
]

= a†(~k) ,
[
Q, a(~k)

]
= −a(~k) ,[

Q, b†(~k)
]

= −b†(~k) ,
[
Q, b(~k)

]
= b(~k)

are fulfilled and use them to show that |a(~k)〉 = a†(~k)|0〉 describes a particle with
momentum kµ and charge 1 and |b(~k)〉 = b†(~k)|0〉 describes a particle with momentum
kµ and charge −1.
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