

Erercises

Theoretical Particle Physics I

Prof. Dr. Milada Margarete Mühlleitner

WS 2023/24

Exercise Sheet 5

	Inound.	$M_{OP} = 97.11.93$
Dr. Christoph Porcehongly, (christoph hongehongly, Oliit, edu)	issueu.	MOII, 27.11.25
DI. Christoph Borschensky (christoph.borschensky@kit.edu)	Hand-in Deadline	Mon 04 12 23
Dr Francisco Arco (francisco arco@kit edu)	mana in Deaume.	Mion, 04.12.20
Di. Hallebeo Hieo (Hallebeo.alcowit.cdu)	Discussion:	Wed/Thu. 06/07.12.23
M.Sc. Felix Egle (felix.egle@kit.edu)		

Exercise 1: Pauli-Jordan distribution (I)

The commutator of a real scalar field $\phi(x)$, evaluated at two different spacetime points x and y,

$$[\phi(x), \phi(y)] \equiv i\Delta(x-y),$$

is also called the *Pauli-Jordan distribution* $\Delta(x - y)$. Using the relations for the commutator $[a(k), a^{\dagger}(k')]$ of the annihilation and creation operators, the Pauli-Jordan distribution can be written as

$$i\Delta(x-y) = \frac{1}{(2\pi)^3} \int d^4k \,\epsilon(k^0) \,\delta(k^2 - m^2) \,e^{-ik \cdot (x-y)} \tag{1.1}$$

with $\epsilon(x) \equiv \theta(x) - \theta(-x)$ and the Heaviside theta function

$$\theta(x) = \begin{cases} 0 & \text{for } x < 0\\ 1 & \text{for } x \ge 0 \end{cases}.$$

(a) [1P] Show that the Pauli-Jordan distribution is a Lorentz-invariant quantity. It can thus only depend on Lorentz-invariant quantities itself. Which are those?
Hint: Show first that the integration measure

$$d\tilde{k} = \frac{d^4k}{(2\pi)^3} \delta(k^2 - m^2)\theta(k^0) = \frac{d^3k}{(2\pi)^3 2\omega_k}$$

with $\omega_k = \sqrt{m^2 + \vec{k}^2}$ is Lorentz-invariant. Is $\epsilon(k^0)$ Lorentz-invariant? Again, we only care about orthochronous Lorentz transformations.

- (b) [6P] Prove the following properties of the Pauli-Jordan distribution, as introduced in the lecture:
 - (i) $(\Box_x + m^2) \Delta(x y) = (\Box_y + m^2) \Delta(x y) = 0$
 - (ii) $\Delta(x-y) = -\Delta(y-x)$
 - (iii) $\Delta(x-y)\Big|_{x^0=v^0} = 0$ (i.e. $\Delta(x-y)$ vanishes for equal times)
 - (iv) $\Delta(x-y) = 0$ for $(x-y)^2 < 0$ (i.e. $\Delta(x-y)$ vanishes for spacelike distances x-y)

(v)
$$\left(\frac{\partial}{\partial x^0}\Delta(x-y)\right)\Big|_{x^0=y^0} = -\delta^{(3)}(\vec{x}-\vec{y}).$$

Hint: Assume that it is always possible to boost a spacelike four-vector $r_{\mu} = (r^0, \vec{r})^T$ into a reference frame where the temporal component vanishes, i.e. $r_{\mu} \to r'_{\mu} = (0, \vec{r}')^T$, where $r^2 = r'^2 = r'_{\mu}r'^{\mu} = -\vec{r}'^2 < 0$ is obvious.

[7P]

Exercise 2: Pauli-Jordan distribution (II)

The momentum integral of the Pauli-Jordan distribution as introduced in exercise 1 can be evaluated explicitly to write $\Delta(r)$ with r := x - y as:

$$\Delta(r) = \frac{m}{4\pi\sqrt{r^2}}\epsilon(r^0)\,\theta(r^2)\,J_1(m\sqrt{r^2}) - \frac{1}{2\pi}\epsilon(r^0)\,\delta(r^2)\,,\tag{2.1}$$

where $\epsilon(x)$ and $\theta(x)$ are defined in exercise 1, and $J_1(x)$ denotes the Bessel function of the first kind. The first term in this expression denotes the case where the spacetime distance r is timelike, i.e. $r^2 > 0$, and the second term denotes lightlike spacetime distances, i.e. $r^2 = 0$.

Note: To avoid confusion: while r^0 in Eq. (2.1) and the following means the temporal component of the four-vector r^{μ} , r^2 stands for the square, i.e. the invariant product $r^2 = r_{\mu}r^{\mu}$ (and not the second spatial component of r).

(a) [2P] Show that it is possible to rewrite the integral of Eq. (1.1) of exercise 1 into the following form:

$$\Delta(r) = -\frac{1}{2\pi^2 \bar{r}} \int_0^\infty d\bar{k} \, \frac{\bar{k}}{\omega_k} \sin(\bar{k}\bar{r}) \sin(\omega_k r^0) \,, \qquad (2.2)$$

where we introduced the variables $\bar{r} := |\vec{r}|, \bar{k} := |\vec{k}|$, and $\omega_k = \sqrt{m^2 + \bar{k}^2}$. Hint: Use spherical coordinates with the integration element

$$\int d^3k = \int_0^{2\pi} d\varphi \int_{-1}^1 d\cos\vartheta \int_0^\infty d\bar{k} \, \bar{k}^2$$

and integrate over the angular variables φ and $\cos \vartheta$.

(b) [3P] Consider the case of timelike spacetime distances, $r^2 > 0$, evaluate the integral and express it through the Bessel function of the first kind $J_1(m\sqrt{r^2})$ as in the first term of Eq. (2.1).

Hint: The Bessel function of the first kind $J_1(x)$ is given by the following integral representation:

$$J_1(x) = -\frac{2x}{\pi} \int_1^\infty dt \,\sqrt{t^2 - 1} \sin(xt) \qquad \text{for } x > 0 \,.$$

Since the Pauli-Jordan distribution is Lorentz-invariant, choose a suitable reference frame for r which simplifies the integrand of Eq. (2.2). Remind furthermore that

$$\frac{\sin x}{x} \xrightarrow{x \to 0} 1.$$

Distinguish between the cases of $r^0 > 0$ and $r^0 < 0$ to properly track the minus sign in the factor of $\epsilon(r^0)$.

(c) [3P] Consider now lightlike spacetime distances, $r^2 = 0$, and evaluate the integral of Eq. (2.2) in this case. The integral will diverge in the *ultraviolet* regime, i.e. for large momenta \bar{k} , as denoted by the appearance of the delta distribution in the second term of Eq. (2.1). To simplify the integration, assume thus $\bar{k} \gg m$.

Hint: The one-dimensional delta distribution can be represented in the following integral form:

$$\delta(x - x_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \cos\left(k(x - x_0)\right)$$

[8P]

Exercise 3: Quantization of the Complex Scalar Field - Continued [5P]

We again look at the Lagrangian for a complex scalar field,

$$\mathcal{L} = (\partial_{\mu}\phi^{\dagger})(\partial^{\mu}\phi) - m^{2}\phi^{\dagger}\phi_{2}$$

where we again can write ϕ and ϕ^{\dagger} as

$$\phi(x) = \int d\tilde{k} \left[a(\vec{k})e^{-ik\cdot x} + b^{\dagger}(\vec{k})e^{ik\cdot x} \right]$$
$$\phi^{\dagger}(x) = \int d\tilde{k} \left[b(\vec{k})e^{-ik\cdot x} + a^{\dagger}(\vec{k})e^{ik\cdot x} \right].$$

As in the lecture (and as you showed on the last sheet) the operators $a, a^{\dagger}, b, b^{\dagger}$ fulfill the commutator relations

$$\left[a(\vec{k}), a^{\dagger}(\vec{k'})\right] = \left[b(\vec{k}), b^{\dagger}(\vec{k'})\right] = (2\pi)^3 \, 2\omega_k \, \delta(\vec{k} - \vec{k'})$$

all other commutators = 0.

(a) [3P] Show that the normal ordered 4-momentum operator P_{μ} can be written as

$$P_{\mu} = \int d^3x : T^0{}_{\mu} := \int d\tilde{k} \, k_{\mu} \left[a^{\dagger}(\vec{k}) \, a(\vec{k}) + b^{\dagger}(\vec{k}) \, b(\vec{k}) \right] \,,$$

in terms of creation and annihilation operators.

(b) [2P] In the lecture and in the last exercise sheet we derived the conserved charge

$$Q = \int \mathrm{d}\tilde{k} \, \left[a^{\dagger}(\vec{k}) \, a(\vec{k}) - b^{\dagger}(\vec{k}) \, b(\vec{k}) \right]$$

Show that the commutation relations

$$\begin{split} \left[P_{\mu}, a^{\dagger}(\vec{k}) \right] &= k_{\mu} a^{\dagger}(\vec{k}) \,, & \left[P_{\mu}, a(\vec{k}) \right] = -k_{\mu} a(\vec{k}) \,, \\ \left[P_{\mu}, b^{\dagger}(\vec{k}) \right] &= k_{\mu} b^{\dagger}(\vec{k}) \,, & \left[P_{\mu}, b(\vec{k}) \right] = -k_{\mu} b(\vec{k}) \,, \\ \left[Q, a^{\dagger}(\vec{k}) \right] &= a^{\dagger}(\vec{k}) \,, & \left[Q, a(\vec{k}) \right] = -a(\vec{k}) \,, \\ \left[Q, b^{\dagger}(\vec{k}) \right] &= -b^{\dagger}(\vec{k}) \,, & \left[Q, b(\vec{k}) \right] = b(\vec{k}) \end{split}$$

are fulfilled and use them to show that $|a(\vec{k})\rangle = a^{\dagger}(\vec{k})|0\rangle$ describes a particle with momentum k_{μ} and charge 1 and $|b(\vec{k})\rangle = b^{\dagger}(\vec{k})|0\rangle$ describes a particle with momentum k_{μ} and charge -1.