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Exercise 1: Dirac field momentum and charge [8P]
The solution of the Dirac equation can be expanded in plane waves as follows

ψ(x) =
∫

dk̃
∑
λ=±

[
aλ(k)u(k, λ)e−ik·x + b†λ(k)v(k, λ)eik·x

]
, with dk̃ = d3~k

(2π)32ωk
.

Therein, u(k, λ) and v(k, λ) are Dirac spinors associated with positive and negative energy
solutions, respectively. They obey the relations

u†(k, λ)u(k, λ′) = v†(k, λ)v(k, λ′) = 2ωkδλλ′ ,

u†(k̄, λ)v(k, λ′) = v†(k̄, λ)u(k, λ′) = 0,

where k̄ = (ωk,−~k)T . At this stage, we leave open whether the a
(†)
λ (k) and b

(†)
λ (k) follow

commutation or anti-commutation relations.
(a) [4P] Show that the components T 0µ of the energy-momentum tensor are given by

T 0µ = ψ†i∂µψ. Express the four-momentum of the Dirac field

P µ =
∫

d3xT 0µ

in terms of aλ(k), a†λ(k), bλ(k) and b†λ(k).
(b) [2P] Now, express the charge of the Dirac field

Q =
∫

d3xψ(x)γ0ψ(x)

in terms of the coefficients aλ(k), a†λ(k), bλ(k) and b†λ(k).
(c) [2P] For both subexercises (a) and (b), argue why having anti-commutation relations for

b and b† leads to physically sensible results.

Exercise 2: The Feynman propagator [6P]
On the previous sheet 5, you have derived several properties of the Pauli-Jordan distribution
∆(x− y), a type of propagator for the scalar field φ(x). One of its properties was microcausality,
i.e. the vanishing of ∆(x− y) for spacelike distances (x− y)2 < 0. This can e.g. also be seen
directly from sheet 5, Eq. (2.2), where the integrand vanishes if a suitable reference frame is
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chosen with the temporal component of the spacelike distance x0 − y0 = r0 = 0. In the lecture,
you got to know also another type of propagator, the Feynman propagator ∆F (x− y), which
can be written in the following integral representation:

i∆F (x− y) = lim
ε→0+

∫ d4k

(2π)4
1

k2 −m2 + iε
e−ik·(x−y) . (2.1)

We will discuss it here, similarly to the Pauli-Jordan propagator, in the case for Hermitian
scalar fields φ = φ†.

(a) [3P] First, show the following properties:
(i) ∆F (x− y) is an even function: ∆F (x− y) = ∆F (y − x).

(ii) ∆F (x− y) is the Green’s function of the Klein-Gordon equation:(
�x +m2

)
∆F (x− y) =

(
�y +m2

)
∆F (x− y) = −δ(4)(x− y).

(iii) ∆F (x− y) is invariant under Poincaré transformations:

∆F (x′ − y′) = ∆F (x− y) for x′ = Λx+ b, y′ = Λy + b.

(b) [3P] We now want to evaluate the integral of ∆F (x − y). After performing the k0
integration in Eq. (2.1) (you do not have to do this), you have seen in the lecture that
the Feynman propagator can also be written as (with r = x− y):

i∆F (r) =
∫ d3k

(2π)32ωk

[
θ(r0)e−ik·r + θ(−r0)eik·r

]
, (2.2)

where ωk =
√
~k2 +m2. Since the steps for timelike (r2 > 0) and lightlike (r2 = 0)

spacetime distances are analogous (with slightly different Bessel functions) to the case of
the Pauli-Jordan propagator, we do not ask you to repeat them here.
Evaluate thus the integral only for spacelike distances, r2 < 0, and show that the Feynman
propagator, in contrast to the Pauli-Jordan propagator, does not vanish, and leads to
the following result:

i∆F (r)
∣∣∣
r2<0

= m

4π2
√
−r2

K
(1)
1 (m

√
−r2) ,

where we introduced the modified Hankel function

K
(1)
1 (x) = 1

2i

∫ ∞
−∞

dt
teixt√
t2 + 1

for x > 0 ,

which is also a type of Bessel function (of the third kind).
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Exercise 3: Causality and the spin-statistics theorem [6P]
In the previous exercise 2, you found that the Feynman propagator is non-zero for spacelike
intervals, which seemed to be at odds with causality. However, in quantum field theories,
causality is normally defined over the (anti)commutator of the fields rather than over the
propagators. For this exercise, assume that we consider quantized scalar fields of the form

φ+(x) =
∫
dk̃ eik·xa(~k) , φ−(x) =

∫
dk̃ e−ik·xa†(~k) . (3.1)

The operators a(~k), a†(~k) shall obey the usual algebra[
a(~k), a(~k′)

]
∓

=
[
a†(~k), a†(~k′)

]
∓

= 0 ,[
a(~k), a†(~k′)

]
∓

= (2π)3 2ωk δ(~k − ~k
′) ,

where the index ‘−’ denotes the commutator, while the index ‘+’ denotes the anticommutator,
and the index ‘∓’ implies that we leave this choice open. Causality requires that for two field
operators that are separated by a spacelike interval, we find

[φ(x), φ(y)]∓ = 0 for (x− y)2 < 0 . (3.2)

(a) [2P] Discuss either mathematically or geometrically (e.g. with the help of a Minkowski
diagram) why the vanishing (anti)commutator for spacelike intervals is an argument of
causality, i.e. why a “measurement” of φ(x) should not influence another “measurement”
φ(y) where x and y are separated by a spacelike interval, and why this does not have to
hold for timelike intervals, where the (anti)commutator may be non-zero.

(b) [2P] Show that the fields φ+(x) and φ−(x) of Eq. (3.1) do not obey the (anti)commutator
relation of Eq. (3.2) for spacelike intervals.
Hint: Calculate Eq. (3.2) for spacelike intervals r2 ≡ (x− y)2 < 0 for all combinations of φ+(x)
and φ−(x). You can use the results from exercise 2.

In order to restore causality, we define new fields

φλ(x) = φ+(x) + λφ−(x) , φ†λ(x) = φ−(x) + λ∗φ+(x)

with a complex parameter λ.
(c) [2P] Calculate Eq. (3.2) for all possible combinations of φλ and φ†λ(x). What is the

value of λ if we require causality for both fields? Do you have to choose commutators or
anticommutators to restore causality?

Note: The connection between the spin of the fields and their algebra is called the spin-statistics
theorem. In part (c), you will see that the requirement of causality automatically leads to the correct
spin-statistics of scalar fields.
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