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Exercise 1: Polarizations and propagator for massive vector boson [8P]
The Lagrangian for a vector boson with mass m 6= 0, described by the field Vµ, is given by:

L = −1
4FµνF

µν + m2

2 VµV
µ

with Fµν = ∂µVν − ∂νVµ. You discussed this Lagrangian already on exercise sheet 3, and while
deriving the equations of motion, found that for the massive vector field, the Lorentz gauge
condition ∂µV

µ = 0 is automatically fulfilled.
(a) [4P] To quantise the massive vector field, we introduce as usual a Fourier decomposition

of the form:

Vµ(x) =
∫

dk̃
3∑
r=0

(
ε(r)
µ (k) a(r)(k) e−ik·x + ε(r)∗

µ (k) a(r)†(k) eik·x
)
.

A priori, this includes four polarization vectors ε(r)
µ (k). Due to ∂µV

µ = 0, only three
linearly independent polarization vectors survive. Show that a convenient basis for these
polarization vectors, in the reference frame with ~k = (0, 0, |~k|)T , is given by

ε(1)
µ =


0
1
0
0

 , ε(2)
µ =


0
0
1
0

 , ε(3)
µ = 1

m


|~k|
0
0
ωk


for the three physical polarization vectors, which are orthogonal to the unphysical polari-
zation vector ε(0)

µ = kµ/m. The physical polarization vectors obey the orthonormality
condition

ε(r),µ(k)ε(s)∗
µ (k) = −δrs .

Furthermore, derive the form of the completeness relation,

3∑
r=1

ε(r)
µ (k)ε(r)∗

ν (k) = −gµν + kµkν
m2 ,

from general considerations, i.e. by writing down all possible Lorentz tensors and using
the properties of the ε(r)

µ (k), and show that the given polarization vectors above fulfill
this relation.
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(b) [4P] We now impose standard bosonic commutation relations for the surviving operators.
They read

[a(r)(k), a(s)(k′)] = [a(r)†(k), a(s)†(k′)] = 0,
[a(r)(k), a(s)†(k′)] = δrs2ωk(2π)3δ(3)(~k − ~k′) .

Verify, in a similar manner to what was shown in the lecture for the scalar field, that the
Feynman propagator of the massive vector boson takes the form

〈0|TV µ(x)V ν(y)|0〉 =
∫ d4k

(2π)4
i

k2 −m2 + iε

(
−gµν + kµkν

m2

)
e−ik·(x−y) ,

where T is the time-ordering operator for bosonic fields (i.e. the same as in the scalar
case).
Hint: Evaluate the k0 integral on the right-hand side of the equation (treat the poles of the
integrand carefully), and show that it corresponds to the expression on the left-hand side.
Note: As the photon has only two rather than three physical degrees of freedom, the limit
m→ 0 of this propagator is not well-defined and does not yield the photon propagator.

Exercise 2: Electromagnetic stress-energy tensor [4P]
The Lagrangian for a massless vector field is given by:

L = −1
4FµνF

µν , Fµν = ∂µAν − ∂νAµ.

Derive Maxwell’s equations as the Euler-Lagrange equations and calculate the energy-momentum
tensor T µν given by Noether’s Theorem. Note that this does not yield a symmetric tensor. We
can, however, use the fact that

T̂ µν = T µν + ∂λK
λµν

is also a conserved quantity, if Kλµν is antisymmetric in its first two indices (convince yourself
of this fact). Show that this construction with

Kλµν = F µλAν ,

leads to a symmetric energy tensor T̂ µν and also yields the standard formula for the electroma-
gnetic energy and momentum densities, i.e.

T̂ 00 = E = 1
2(E2 +B2) , T̂ 0i = Si = ( ~E × ~B)i ,

by identifying Ei = −F 0i and εijkBk = −F ij.
Hint: Use the equation of motion to simplify your calculation. Beware of upper and lower indices and
resulting minus signs.

ILIAS link: https://ilias.studium.kit.edu/goto.php?target=crs_2223839 page 2 of 3

https://ilias.studium.kit.edu/goto.php?target=crs_2223839


Exercise 3: Vacuum of the Gupta-Bleuler photon [8P]
In the Gupta-Bleuler formalism of the free photon field, the most general vacuum state reads

|ϕ〉 =
∞∑
n=0

Cn|ϕn〉 .

The states |ϕn〉 do not include transverse photons, but exactly n scalar and longitudinal photons.
The additional condition

(a(3)(k)− a(0)(k))|ϕn〉 = 0

makes these states physical. We moreover choose |ϕ0〉 = |0〉.
(a) [3P] Show that the most general form of |ϕ1〉 is given by

|ϕ1〉 =
∫
dq̃ f(q)

(
a(3)†(q)− a(0)†(q)

)
|0〉 .

Hint: Use the ansatz
|ϕ1〉 =

∫
dq̃

∑
r=0,3

a(r)†(q)f (r)(q)|0〉

with an arbitrary function f (r)(q).

(b) [5P] Show that the expectation value of the photon field in the above general vacuum
state corresponds to a pure gauge, i.e.

〈ϕ|Aµ(x)|ϕ〉 = ∂µΛ(x) ,

where, using the explicit polarization vectors ε(0)
µ (k) = nµ and ε(3)

µ (k) = kµ

k·n − nµ (with
nµ an arbitrary 4-vector for which n · k 6= 0), the function Λ(x) is given by

Λ(x) =
∫ dk̃

k · n
2Re

(
iC∗0C1e

−ik·xf(k)
)
.

Therein, f(k) is identical to the one in subexercise (a). The function Λ(x) fulfills
�Λ(x) = 0 and can be chosen arbitrarily through the choice of the corresponding vacuum
state |ϕ〉.
Hint: First, show that

〈ϕn|NAµ(x)|ϕn−1〉 = 〈ϕn|Aµ(x)|ϕn−1〉

with

N =
∫

dk̃(a(3)†(k)a(3)(k)− a(0)†(k)a(0)(k))

the operator that counts longitudinal and scalar photons. Thus it yields 〈ϕn|Aµ(x)|ϕn−1〉 = 0
for n 6= 1.
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