
Theoretical Particle Physics I
Prof. Dr. Milada Margarete Mühlleitner WS 2023/24
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Exercise 1: Wick’s theorem [8P]
In the calculation of S-matrix elements, we come across general n-point correlation functions,

〈0|Tφ(x1)φ(x2) · · ·φ(xn)|0〉

with the n fields evaluated at different spacetime points x1, . . . , xn, and the time-ordering
operator T as introduced in the lecture. Wick’s theorem allows us to express these correlation
functions in terms of two-point correlation functions which we already computed and know as
the Feynman propagators, 〈0|Tφ(xi)φ(xj)|0〉 = i∆F (xi − xj).

In this exercise, we want to study Wick’s theorem for a real scalar field φ. In the following,
we split up φ into two parts corresponding to positive (φ+) and negative frequencies (φ−),

φ+(x) =
∫
dk̃ a(k)e−ik·x , φ−(x) =

∫
dk̃ a†(k)eik·x , so that φ(x) = φ+(x) + φ−(x) .

We use the following notation for a Wick contraction:

φ(x)φ(y) := 〈0|Tφ(x)φ(y)|0〉 = i∆F (x− y) .

(a) [1P] Argue why 〈0|:O:|0〉 = 0 for a normal-ordered operator O, where O could e.g. be a
product of an arbitrary number of field operators φ(x).

(b) [1P] Verify that
φ(x)φ(y) = :φ(x)φ(y): +

[
φ+(x), φ−(y)

]
.

Use this to show explicitly that

Tφ(x)φ(y) = :φ(x)φ(y): + f(x, y) ,

where f(x, y) is a c-number. Give the explicit form of f(x, y) in terms of commutators
and show that f(x, y) = φ(x)φ(y) = i∆F (x− y).

(c) [2P] Derive, in a similar way to the case of two fields, the expression for three fields as
shown in the lecture:

Tφ(x1)φ(x2)φ(x3) = :φ(x1)φ(x2)φ(x3): + :φ(x1):φ(x2)φ(x3) + :φ(x2):φ(x1)φ(x3)

+ :φ(x3):φ(x1)φ(x2)

Hint: Start with the product of fields on the left-hand side and write again all fields in terms of
the φ+(x) and φ−(x).
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(d) [2P] Prove Wick’s theorem for n fields, where, for simplicity, we write φi ≡ φ(xi):

Tφ1 · · ·φn = :φ1 · · ·φn:

+ :φ1φ2 · · ·φn: + :φ1φ2φ3 · · ·φn: + . . . “single” contractions

+ :φ1φ2φ3φ4 · · ·φn: + :φ1φ2φ3φ4 · · ·φn: + . . . “double” contractions

+ . . .

+ :φ1φ2 · · ·φn−1φn: + . . . “full” contractions

The terms in the boxes stand for all permutations with one pair of fields being contracted
(“single”), two pairs being contracted (“double”), . . . , all fields being contracted (“full”).
Note that for an odd number n of fields, in the terms of the last line, there will always
be one uncontracted field left over (see e.g. the case for n = 3 in part (c)).
Hint: Prove the equation via induction. Assume for simplicity that all fields are already ordered
in time, i.e. x0

1 > x0
2 > . . . > x0

n, so that T (φ1 · · ·φn) = φ1 · · ·φn and therefore in particular
T (φ1 · · ·φn) = φ1T (φ2 · · ·φn). If it makes it easier for you, you can also assume that n is even.
You might furthermore find the following relation useful to relate the commutator between
products of operators to a sum of commutators of two operators only:

[A1, A2 · · ·Am] =
m∑
i=2

A2 · · ·Ai−1[A1, Ai]Ai+1 · · ·Am for m ≥ 3 ,

which is the generalisation of [A,BC] = [A,B]C +B[A,C]. As the commutator between two
fields φi and φj are c-numbers (i.e. no operators), it also holds that

[φ1, :φ2 · · ·φn:] = :[φ1, φ2 · · ·φn]: ,

i.e. the normal ordering can be considered after evaluating the commutator. Remind that you
can split up the field φi = φ+

i + φ−i , and that [φ+
i , φj ] = [φ+

i , φ
−
j ].

Note: Since the Wick contraction φ(x)φ(y) is a c-number, i.e. not a operator quantity, we can
freely commute it with the uncontracted or other contracted field operators and e.g. write:

:φ1φ2φ3φ4: = :φ2φ4:φ1φ3 = :φ2φ4: 〈0|Tφ1φ3|0〉 or :φ1φ2φ3φ4φ5φ6: = :φ3φ5:φ1φ4φ2φ6

(e) [2P] Which of the terms of part (d) are relevant if we take the vacuum expectation value
of the expression, 〈0|Tφ1 . . . φn|0〉? What do you get for n = 3 and n = 4, or, in general,
odd and even n? Can you interpret the result for n = 4 graphically?

Exercise 2: Feynman rules in φ4 theory [12P]
As a practical application of Wick’s theorem we can derive Feynman rules, i.e. diagrammatic rules
to construct diagrams and scattering processes. Let us in the following study the Lagrangian of
a real scalar field φ with a φ4 interaction term:

L = 1
2(∂µφ)(∂µφ)− m2

2 φ2 + LI with LI = − λ4!φ
4 , (2.1)
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where m is the mass of φ and λ is a real dimensionless coupling constant. We now add this
interaction term to the time-ordered correlation functions,

〈0|Tφ(x1) . . . φ(xn) exp
[
i
∫
d4z LI(z)

]
|0〉 . (2.2)

We cannot calculate these correlation functions exactly anymore, so we have to do perturbation
theory, under the assumption that the coupling constant λ is small, λ� 1.

(a) [3P] Let us first of all discuss the case for n = 0, 〈0|T exp [i
∫
d4z LI(z)] |0〉. This

correlation function describes vacuum diagrams that are not connected to any external
lines, and they therefore do not contribute to scattering processes. Expand the correlation
function up to O(λ2) (i.e. neglect terms of O(λ3) and higher). Evaluate the resulting
terms with Wick’s theorem and show that you obtain the following expressions:

〈0|T exp
[
i
∫
d4z LI(z)

]
|0〉 = 1 + i

λ

8

∫
d4z [∆F (z − z)]2

− λ2

128

∫
d4z1

∫
d4z2 [∆F (z1 − z1)∆F (z2 − z2)]2

− λ2

16

∫
d4z1

∫
d4z2 [∆F (z1 − z2)]2∆F (z1 − z1)∆F (z2 − z2)

− λ2

48

∫
d4z1

∫
d4z2 [∆F (z1 − z2)]4 +O(λ3) .

Count all possible contractions properly in order to get the correct numerical prefactors.
Try to interpet the O(λ) and O(λ2) terms graphically. Denote each factor of a Feynman
propagator by a line, and each coordinate z, z1, z2 by a point. It is possible that a
diagram corresponding to one term can consist of several disconnected pieces.

(b) [3P] We now focus on the case with two fields, n = 2, and expand Eq. (2.2) up to O(λ).
The first term of the expansion is nothing more than the plain propagator i∆F (x− y).
Use Wick’s theorem to show that the second term of O(λ) results in

〈0|Tφ(x)φ(y)
[
−iλ
4!

∫
d4zφ4(z)

]
|0〉 =− λ

8 ∆F (x− y)
∫
d4z∆F (z − z)∆F (z − z)

− λ

2

∫
d4z∆F (x− z)∆F (y − z)∆F (z − z)

Again, find a pictorial representation (i.e. a Feynman diagram) of the terms. Similarly to
the case for the vacuum diagrams, you can get disconnected pieces.

(c) [1P] The previous discussion was carried out in position space. However, Feynman rules
turn out to be simpler in momentum space. For this purpose we use the well-known
representation of the propagator in momentum space

i∆F (x− y) = 〈0|Tφ(x)φ(y)|0〉 =
∫ d4p

(2π)4
i

p2 −m2 + iε
e−ip(x−y) ,

such that we associate a momentum p (and its direction) with each line in a Feynman
diagram. Insert this representation of the propagator into the last term of the previous
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subexercise. Show that the integration over z results in momentum conservation at the
vertex z.

(d) [4P] We finally consider n = 4, a correlation function with four external fields. Split the
vacuum expectation value of Eq. (2.2), again expanded up to O(λ), into combinations of
propagators using Wick’s theorem. Draw all Feynman diagrams, both connected and
disconnected.

(e) [1P] Use the previous subexercises to motivate that the Feynman rule in momentum
space for the vertex in combination with momentum conservation is given by

(−iλ)(2π)4δ(4)(p1 + p2 − p3 − p4) .
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