

Prof. Dr. Milada Margarete Mühlleitner

## Exercise Sheet 10

| Exercises:                                                 | To our od.        | $M_{am} = 15.01.94$   |
|------------------------------------------------------------|-------------------|-----------------------|
| Dr. Christoph Borgshongly (shristoph hongshongly (lit ody) | Issued:           | Mon, 15.01.24         |
| DI. Christoph Borschensky (christoph.borschensky@kit.edu)  | Hand-in Deadline: | Mon. 22.01.24         |
| Dr. Francisco Arco (francisco.arco@kit.edu)                | Discussion        | Wed/Thu $24/25.01.24$ |
| M.Sc. Felix Egle (felix.egle@kit.edu)                      | D13Cu331011.      | weu/11iu, 24/25.01.24 |

## **Exercise 1:** S-matrix elements for $\phi^4$ -theory

On the previous sheet, we have discussed time-ordered correlation functions of the type

$$\langle 0|T\phi(x_1)\cdots\phi(x_n)\exp\left[i\int d^4z\,\mathcal{L}_I(z)\right]|0\rangle$$
. (1.1)

These correlation functions capture the interaction content of our theory, described by the interaction Lagrangian  $\mathcal{L}_I$ . In the lecture, you learned about the S-matrix elements

$$\langle f|S|i\rangle$$
, (1.2)

where the initial  $|i\rangle$  and final  $\langle f|$  states are asymptotic (in the sense of the time  $t \to -\infty$  and  $t \to +\infty$ ) multi-particle states. The S-matrix elements describe transition amplitudes of e.g. a scattering process from an initial to a final state.

The connection between Eqs. (1.1) and (1.2), i.e. between a quantity which we can calculate (correlation function) and a transition amplitude for an experimentally measurable process (S-matrix element), is quite complicated and technical, and goes by the name of LSZ reduction formula<sup>1</sup>. We do not want to describe this formula here, but simply use it so that we can calculate  $\langle f|S|i \rangle$  as introduced in the lecture, in a similar way to the correlation functions:

$$\langle f|S|i\rangle = \langle f|T\left[\exp\left(i\int d^4z \,\mathcal{L}_I(z)\right)\right]|i\rangle,$$
(1.3)

with the time-ordering operator T and the multi-particle initial and final states, defined as

$$|i\rangle = |\vec{p}_1, \dots, \vec{p}_{n_i}\rangle = a^{\dagger}(\vec{p}_1) \cdots a^{\dagger}(\vec{p}_{n_i})|0\rangle$$
 and analogously  $\langle f| = \langle 0|a(\vec{k}_1) \cdots a(\vec{k}_{n_f}),$ 

with  $p_1, \ldots, p_{n_i}$  the  $n_i$  initial momenta and  $k_1, \ldots, k_{n_f}$  the  $n_f$  external ones. Let us for now stick to the simple example of  $\phi^4$ -theory with

$$\mathcal{L}_I = -rac{\lambda}{4!}\phi^4$$
 .

We begin by discussing the scattering process of two scalar fields  $\phi \phi \rightarrow \phi \phi$ , so  $n_i = n_f = 2$ .

(a) [2P] First, determine  $\langle f|i\rangle$ , i.e. the trivial term in the expansion of the S-matrix of Eq. (1.3), and express it in terms of delta distributions. Can you represent the resulting terms graphically?

[9P]

<sup>&</sup>lt;sup>1</sup>named after the authors Lehmann, Symanzik, and Zimmermann

(b) [1P] Expand Eq. (1.3) up to  $\mathcal{O}(\lambda)$  and use Wick's theorem to rewrite the time-ordered product as terms consisting of normal-ordered operators and Wick contractions. You should obtain

$$\begin{split} \left\langle f|S|i\right\rangle \Big|_{\mathcal{O}(\lambda)} &= -i\frac{\lambda}{4!}\int d^4z \left[ \left\langle f|:\phi(z)\phi(z)\phi(z)\phi(z):|i\right\rangle + 6\,\overline{\phi(z)\phi(z)}\langle f|:\phi(z)\phi(z):|i\rangle \right. \\ &+ 3\,\overline{\phi(z)\phi(z)\phi(z)\phi(z)}\langle f|i\rangle \right]. \end{split}$$

*Note:* Contrary to the correlation functions, the S-matrix elements do not vanish if several fields are left uncontracted due to the annihilation and creation operators in  $|i\rangle$  and  $\langle f|$ .

(c) [**3P**] Evaluate the second term of part (b),

$$-6i\frac{\lambda}{4!}\int d^4z\,\overline{\phi(z)}\phi(z)\langle f|:\phi(z)\phi(z):|i\rangle\,.$$

Introduce again  $\phi^+(x)$  and  $\phi^-(x)$  as defined in exercise 1 of sheet 9 to simplify the evaluation of the normal-ordered product and use the definitions for the contractions with the creation and annihilation operators of the external states:

$$\phi^+(x)a^{\dagger}(\vec{p}) = e^{-ip\cdot x}$$
 and  $a(\vec{p})\phi^-(x) = e^{ip\cdot x}$ 

Find a graphical representation of this term. Does it describe a scattering process?

(d) [2P] Evaluate now the first term of part (b),

$$-i\frac{\lambda}{4!}\int d^4z \left\langle f|:\phi(z)\phi(z)\phi(z)\phi(z):|i
ight
angle$$

and show that you obtain:

$$-i\lambda(2\pi)^4\delta^{(4)}(k_1+k_2-p_1-p_2).$$

Again, represent this term graphically as a diagram, and discuss why only this *fully* connected diagram contributes to the scattering process.

Note: By fully connected, we mean that each endpoint of the diagram has to be connected.

(e) [1P] We take a quick look at the more complicated  $2 \to 4$  process  $\phi\phi \to \phi\phi\phi\phi$  with  $n_i = 2$  and  $n_f = 4$ . What do you now get for  $\langle f|i\rangle$  (it is enough to describe your answer in words)? Can you draw the 10 different *fully connected* diagrams that contribute to this process at  $\mathcal{O}(\lambda^2)$ ?

## Exercise 2: Mandelstam variables

We consider a  $2 \rightarrow 2$  scattering process. We denote the momentum and mass of each particle in the initial state (i = 1, 2, ingoing momenta) and final state (i = 3, 4, outgoing momenta) by  $p_i$  and  $m_i$ , respectively. All four particles are on-shell, i.e.  $p_i^2 = m_i^2$ . Thus we have the energy-momentum conservation

$$p_1 + p_2 = p_3 + p_4.$$

[4P]

We define the Mandelstam variables

$$s = (p_1 + p_2)^2$$
,  $t = (p_1 - p_3)^2$ ,  $u = (p_1 - p_4)^2$ .

(a) [2P] How many different scalar products can you build with the given momenta? Show that you can write all of them in terms of s, t, u and the masses  $m_i$ .

(b) [2P] Show that 
$$s + t + u = \sum_{i=1}^{4} m_i^2$$
 by using four-momentum conservation.

## Exercise 3: Pair annihilation in QED

In the lecture, you discussed the annihilation of an electron-positron pair into two photons,

$$e^{-}(p_1, s_1) + e^{+}(p_2, s_2) \to \gamma^{\mu}(k_1, \lambda_1) + \gamma^{\nu}(k_2, \lambda_2),$$

where  $p_1$ ,  $p_2$  and  $s_1$ ,  $s_2$  denote the ingoing momenta and spins of the initial-state electron and positron, respectively, and  $k_1$ ,  $k_2$  as well as  $\lambda_1$ ,  $\lambda_2$  denote the outgoing momenta and polarisations of the final-state photons. The two diagrams for this process are:



The total amplitude can be written as a sum,  $\mathcal{M} = \mathcal{M}_1 + \mathcal{M}_2$ , where  $\mathcal{M}_1$  was given in the lecture as

$$\mathcal{M}_1 = \bar{v}(p_2)(-ie\gamma^{\nu})\frac{\imath}{\not{a} - m + i\epsilon}(-ie\gamma^{\mu})u(p_1)\epsilon_{\mu}^{(\lambda_1)*}(k_1)\epsilon_{\nu}^{(\lambda_2)*}(k_2)$$

with  $q = q_{\mu}\gamma^{\mu}$  and  $q = p_1 - k_1$ . Both the electron and the positron have the same mass m with  $p_1^2 = p_2^2 = m^2$ , while the photons are massless,  $k_1^2 = k_2^2 = 0$ . The necessary Feynman rules of QED can be found in the lecture notes.

(a) [3P] Write down the expression for the second diagram,  $\mathcal{M}_2$ , and show that the sum  $\mathcal{M}$  can be written as:

$$\mathcal{M} = -ie^2 \epsilon_{\mu}^{(\lambda_1)*}(k_1) \epsilon_{\nu}^{(\lambda_2)*}(k_2) \bar{v}(p_2) \left[ \frac{\gamma^{\nu} k_1 \gamma^{\mu} - 2p_1^{\mu} \gamma^{\nu}}{2p_1 \cdot k_1} + \frac{\gamma^{\mu} k_2 \gamma^{\nu} - 2p_1^{\nu} \gamma^{\mu}}{2p_1 \cdot k_2} \right] u(p_1)$$

*Hint:* Use  $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$  as well as the Dirac equations  $(\not p - m)u(p) = 0$  and  $\bar{v}(p)(\not p + m) = 0$ .

(b) [4P] With  $\mathcal{M}^{\mu\nu}$  defined via  $\mathcal{M} = \epsilon_{\mu}^{(\lambda_1)*}(k_1)\epsilon_{\nu}^{(\lambda_2)*}(k_2)\mathcal{M}^{\mu\nu}$ , show the Ward identity:  $k_{1,\mu}\mathcal{M}^{\mu\nu} = k_{2,\nu}\mathcal{M}^{\mu\nu} = 0$ .

Note: The Ward identity is a consequence of the gauge invariance of the amplitude.

[7P]