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This last exercise sheet consists of bonus exercises which do not count towards the required
amount of points. However, if you are still missing points for the required 50% for sheets 1–6
or sheets 7–12, you may obtain them here.

Exercise 1: Compton scattering [bonus 6P]
On exercise sheet 11 we calculated the differential cross section for the annihilation of an
electron-postrion pair. For the squared and averaged matrix element we obtained
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(1.1)

where m is the electron mass and the Mandelstam variables are defined as on sheet 11. We now
want to deduce the squared matrix element for another process, namely Compton scattering:

e−(p1) + γ(k1) −→ e−(p2) + γ(k2) .

We label the momenta again as pi for the electrons and kj for the photons (i, j = 1, 2), with
momentum conservation telling us that p1 + k1 = p2 + k2.

The Feynman diagrams for Compton scattering are very similar to the ones for pair annihilation,
and can be obtained by a suitable rearrangement of the external legs. This method of connecting
the two processes goes by the name of crossing symmetry.

(a) [2P] First, find the crossing relations, i.e. the replacement rules for the momenta to go
from pair annihilation to Compton scattering. What are the replacement rules for the
Mandelstam variables? Finally, use the crossing symmetry to write down the squared
matrix element for Compton scattering immediately from the pair annihilation one of
Eq. (1.1).
Hint: You will obtain an overall minus sign that you have to remove. Do you have an idea why
it occurs?
Note: The crossing symmetry only works to obtain the squared matrix element. The phase-space
factor has to be recalculated, and thus the cross section will be different.
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As the result from part (a) is Lorentz-invariant, we can choose our reference frame as it fits us
best. The next part of the calculation will thus be carried out in the so-called “lab(oratory)
frame” where the electron in the initial state is at rest and the photon in the initial state moves
along the positive z direction. We therefore have for their four-momenta

p1 = (m,~0)T , k1 = (ω1, 0, 0, ω1)T ,

with the ingoing photon energy ω1. We furthermore choose our coordinate system such that the
four-momentum of the outgoing photon is only in the y-z plane,

k2 = (ω2, 0, ω2 sin θ, ω2 cos θ)T ,

where θ is the scattering angle with respect to the direction of the ingoing photon, and ω2 is the
energy of the outgoing photon.

(b) [1P] Show by using momentum conservation that ω2 can be expressed in terms of ω1
and cos θ as

ω2 = ω1

1 + ω1
m

(1− cos θ) .

(c) [2P] We now want to compute the differential cross-section dσ in the lab frame. Show
that you can write it as

dσ
dcos θ = 1
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ω2

2
ω2

1
|M|2 , (1.2)

by calculating the phase space and the flux factor in the lab frame. Then, insert your
result for the squared matrix element from part (a) to obtain
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where as before e2 = 4πα.
(d) [1P] Finally, we want to study the Thomson limit, i.e. the low-energy limit ω1 → 0.

Show that you find the classical result

σtot =
∫

dcos θ dσ
dcos θ = 8πα2

3m2 .

Exercise 2: Scalar QED [bonus 14P]
In the lecture and the previous exercises, we have only discussed QED involving fermions, i.e.
the interactions between electrons and photons, as it is part of the Standard Model of particle
physics. If we go beyond the Standard Model, we can come across new hypothetical particles
that carry an electromagnetic charge. One such possible extension to the Standard Model is
Supersymmetry (SUSY), which adds one or more partners to every Standard Model particle
with similar properties, other than their spin quantum number. The partner of the electron
would thus be the scalar electron, or selectron ẽ. SUSY thus serves as a good motivation to
analyse QED involving scalar particles.
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As the selectron carries the same charge and has the same mass m as the electron, it is
described by the following Lagrangian for a complex scalar field:

L = −1
4FµνF

µν + (Dµẽ)†(Dµẽ)−m2ẽ†ẽ , (2.1)

with the usual expression for the field-strength tensor Fµν = ∂µAν − ∂νAµ and the covariant
derivative Dµ = ∂µ + ieAµ leading to an interaction between the selectron ẽ and the photon Aµ.

(a) [4P] Using the Lagrangian of Eq. (2.1), derive the momentum-space Feynman rules for
the interaction between photons and selectrons using Wick’s theorem, and show that

= −ie(p+ p′)µ, = 2ie2gµν , , (2.2)

where p is defined as ingoing and p′ as outgoing.
Hint: Remind what we did to derive Feynman rules on exercise sheet 10. Choose your initial
and final states appropriately for each interaction vertex. As a start, first, plug the covariant
derivative into Eq. (2.1) to obtain the two interactions. One of the terms comes with a derivative
of the selectron field. Think about what the derivative will turn into in momentum space.

(b) [2P] We now want to look at Compton scattering of selectrons,

ẽ(p1) + γ(k1) −→ ẽ(p2) + γ(k2)

with p1, k1 being the ingoing and p2, k2 the outgoing momenta of the selectron and
photon, respectively. Draw all Feynman diagrams (there are 3 in total) and write down
the full matrix element, using the Feynman rules given above. You should obtain

M = e2
[
2gµν − 1

s−m2 (2p1 + k1)µ(2p2 + k2)ν

− 1
u−m2 (2p1 − k2)ν(2p2 − k1)µ

]
ε(λ1)
µ (k1)ε(λ2)∗

ν (k2) ,

with the Mandelstam variables s = (p1 + k1)2 and u = (p1 − k2)2.
Hint: Use the following expressions for the selectron propagator:

= i

p2 −m2 .

Remind that scalar fields, unlike fermionic or vector ones, do not have any external wave-function
factors.

(c) [2P] Show that the matrix element obtained in part (b) fulfills the Ward identity, i.e.
replace one of the polarisation vectors with its corresponding momentum and show that
the resulting expression vanishes.
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(d) [3P] We now want to calculate the differential cross section. We can reuse the expression
of Eq. (1.2) from the Compton scattering exercise above, as the phase space and the flux
factor are the same as in the fermonic case, and thus only need to calculate the squared
matrix element. As selectrons do not have spin, we only need to sum/average over the
polarisations of the photons. Show that the squared and averaged matrix element can be
written as

|M|2 = 4e4
[
1 + 2m2

( 1
s−m2 −

1
m2 − u

)
+ 2m4

( 1
s−m2 −

1
m2 − u

)2]
.

Then, using the same parametrisation for the momenta as in exercise 1, show that the
differential cross section becomes

dσ
dcos θ = πα2

m2
ω2

2
ω2

1
(1 + cos θ2) .

(e) [1P] As in the case for fermions, go into the limit of vanishing photon energy ω1 → 0,
and compare your result with the one for an electron from the previous exercise.

(f) [2P] The above calculation took into account only tree-level diagrams at O(e2). At
higher orders in perturbation theory, one-loop diagrams have to be included. Some of
these one-loop diagrams will involve as a subdiagram the vacuum polarisation,

as discussed also in the lecture. The grey circle here stands for all possible one-loop
insertions. Draw all diagrams for the vacuum polarisation in scalar QED. Then, using the
Feynman rules from above, write down the corresponding matrix elements (you do not
have to evaluate the integrals). Consider the external photon propagators as amputated,
i.e. you do not have to write them down.
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