Theoretical Particle Physics I

Institut für Theoretische Teilchenphysik

Prof. Dr. Matthias Steinhauser, Dr. Daniel Stremmer, Dr. Marco Vitti, Pascal Reeck Winter term 24/25 – Sheet 1 Due: 28.10.2024, Discussion: 30.10.2024

Exercise 1: Lorentz transformation (7 points)

Consider the Lorentz transformation

$$x^{\mu} \to x^{\prime \mu} = \Lambda^{\mu}{}_{\nu} x^{\nu}, \qquad g_{\mu\nu} \Lambda^{\mu}{}_{\alpha} \Lambda^{\nu}{}_{\beta} = g_{\alpha\beta}, \qquad (1)$$

where Λ is the Lorentz transformation matrix with Minkowski metric $g_{\mu\nu} = \text{diag}(1, -1, -1, -1)_{\mu\nu}$.

a) The principles of special relativity imply that the spacetime interval is invariant for all observers, i.e.

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = g_{\mu\nu}dx'^{\mu}dx'^{\nu} = ds'^{2}, \qquad (2)$$

holds under a transformation of coordinates $x^{\mu} \to x'^{\mu}(x)$. Show that the spacetime interval invariance not only implies the Lorentz transformation, but also the Poincaré transformation $x'^{\mu} = \Lambda^{\mu}{}_{\nu} x^{\nu} + a^{\mu}$, with a^{μ} being the translation.

b) A generic element Λ of the proper, orthochronous Lorentz group $SO(3,1)^+$ reads

$$\Lambda = \exp\left[-\frac{i}{2}\omega_{\mu\nu}L^{\mu\nu}\right],\tag{3}$$

$$(L^{\mu\nu})^{\rho}{}_{\sigma} = i(g^{\mu\rho}g^{\nu}{}_{\sigma} - g^{\nu\rho}g^{\mu}{}_{\sigma}), \qquad (4)$$

where $\omega_{\mu\nu} = -\omega_{\nu\mu}$. $L^{\mu\nu}$ are the generators of SO(3, 1)⁺ having the form as in (4) when acting on four-vectors. Show that the first order expansion in ω of eq. (3) is equivalent to

$$\Lambda^{\rho}{}_{\sigma} = g^{\rho}{}_{\sigma} + \omega^{\rho}{}_{\sigma} + \mathcal{O}(\omega^2) \,. \tag{5}$$

- c) How many degrees of freedom (i.e. real parameters) does the Lorentz group have? Try to show this using a symmetry argument.
- d) The explicit form of ω has the following expression

$$(\omega)^{\rho}{}_{\sigma} = \begin{pmatrix} 0 & -\eta_1 & -\eta_2 & -\eta_3 \\ -\eta_1 & 0 & -\theta_3 & \theta_2 \\ -\eta_2 & \theta_3 & 0 & -\theta_1 \\ -\eta_3 & -\theta_2 & \theta_1 & 0 \end{pmatrix} = \sum_i (\theta_i L_i - \eta_i K_i)^{\rho}{}_{\sigma} \,. \tag{6}$$

Rewrite the angular momentum operators L_i and the boost operators K_i in terms of the generators $L^{\mu\nu}$ using equation (4).

e) Using your results obtained in (d), derive the expression for

$$\Delta x^{\rho} = \Lambda^{\rho}{}_{\sigma} x^{\sigma} - x^{\rho} \tag{7}$$

under the following transformations:

- a rotation by an angle θ_3 around the z-axis,
- a boost η_1 along the *x*-axis.

Exercise 2: Relativistic addition of velocities (3 points)

- a) Write down the transformation matrix of a Lorentz boost as a function of the rapidity η (the velocity is given by $v = \tanh \eta$).
- b) Consider the multiplication of two Lorentz transformation matrices with the rapidities η_1 and η_2 in the same direction. What is the rapidity of the combined Lorentz boost? Determine from this an equation for the relativistic addition of collinear velocities.

Exercise 3: Kinematics of a decay process

Consider the decay of a Z-boson with mass $M_Z = 91.19 \text{ GeV}$ in its rest frame into a $\tau^+ \tau^-$ pair $(m_\tau = 1.78 \text{ GeV})$.

- a) Compute the energy and the momentum (in GeV) of the decay products.
- b) The mean lifetime of tau leptons is $2.9 \cdot 10^{-13}$ s. How far do the tau leptons travel on average?

Exercise 4: Proof that Poincaré group is a group

The Poincaré transformation is a generalisation of the Lorentz transformation and is given by

$$x^{\mu} \to x^{\prime \mu} = \Lambda^{\mu}{}_{\nu} x^{\nu} + a^{\mu}, \tag{8}$$

where a^{μ} is a constant four-vector. Show that the set \mathcal{P} of all Poincaré transformations is a group. If the elements of the group are the pairs (Λ, a) with composition rule given by

$$(\Lambda_1, a_1) \circ (\Lambda_2, a_2) = (\Lambda_1 \Lambda_2, \Lambda_1 a_2 + a_1) \tag{9}$$

show that the following properties are satisfied

- 1. (Closure) The composition of any two elements of \mathcal{P} is still an element of \mathcal{P}
- 2. (Associative Law) For any three elements T_1, T_2, T_3 within \mathcal{P} , the following holds

$$(T_1 \circ T_2) \circ T_3 = T_1 \circ (T_2 \circ T_3)$$

3. For every T, there exists an identity element I such that

$$(T \circ I) = (I \circ T) = T$$

4. For each T, there exists an inverse element T^{-1} such that

$$(T \circ T^{-1}) = (T^{-1} \circ T) = I$$