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Exercise 1: Interpretation of the propagators (5 points)
Consider the following Lagrange density

L =
1

2
∂µϕ(x)∂

µϕ(x)− 1

2
m2ϕ2(x) ,

where ϕ(x) is a real scalar field. The field operator ϕ(x) is expressed as

ϕ(x) =

∫
d3k

(2π)3
1

2ωk

[
e−ikxa(k⃗) + eikxa†(k⃗)

]
,

where ωk =
√
k⃗2 +m2. The creation and annihilation operators satisfy the following commuting

relations (cf. lecture)

[a(k⃗), a(k⃗′)] = 0, [a†(k⃗), a†(k⃗′)] = 0, [a(k⃗), a†(k⃗′)] = 2ωk(2π)
3δ(k⃗ − k⃗′) .

You may use the following relations without any derivation∫ ∞

0

κ sin(κr)dκ√
κ2 +m2

=
2

1
2m

π
1
2

BesselK(1,mr),

∫ ∞

0

κ sin(κr)dκ√
2
√
κ2 +m2

=
2

1
4

Γ(14)

BesselK(54 ,mr)

m− 5
4 r

1
4

, (1)

where the Bessel function BesselK can be evaluated by using, e.g., Mathematica.

Property of the one-particle state (3 points) In this subsection, we consider a time-
independent state. The one-particle state with momentum k⃗ is defined as |⃗k⟩ = a†(k⃗) |0⟩ and
this is an eigenstate of the 4-momentum operator. In a similar way, let us define the one-particle
state localized at x⃗ as the eigenstate of the position operator. The properties of these states are

P⃗ |⃗k⟩ = k⃗ |⃗k⟩ , ⟨k⃗′ |⃗k⟩ = 2ωk(2π)
3δ(k⃗′ − k⃗), X⃗ |x⃗⟩ = x⃗ |x⃗⟩ , ⟨x⃗′|x⃗⟩ = δ(x⃗′ − x⃗) . (2)
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Figure 1: The behavior of
w(r) in Eq. (5). We set
m = 1.

|⃗k⟩ and |x⃗⟩ span the Hilbert space of the one-particle states:

11one-particle =

∫
d3k

(2π)3
1

2ωk
|⃗k⟩ ⟨k⃗| , 11one-particle =

∫
d3x |x⃗⟩ ⟨x⃗| .

(3)

The canonical commutation relation, [Xa, Pb] = iδab, leads to the
following differential equation for ⟨x⃗|⃗k⟩

k⃗ ⟨x⃗|⃗k⟩ = ⟨x⃗| P⃗ |⃗k⟩ = ⟨x⃗|
(
−i ∂
∂x⃗

)
|⃗k⟩ = −i∂ ⟨x⃗|⃗k⟩

∂x⃗
. (4)

a) Obtain the solution of the differential equation (4) including the proper normalization fac-
tor. The proper normalization factor should be consistent with all of the above equations.

https://ilias.studium.kit.edu/goto_produktiv_crs_2482116.html


b) Let us express the state ϕ̂(t = 0, x⃗) |0⟩ in terms of |x⃗⟩, which allows us to get a more
intuitive physical interpretation. For this purpose, we use the completeness relation of |x⃗⟩
in Eq. (3) and express the state as the superposition of the localized states |x⃗′⟩ with a
weight function:

ϕ(t = 0, x⃗) |0⟩ =
∫

d3x′ |x⃗′⟩ ⟨x⃗′| ϕ̂(t = 0, x⃗) |0⟩ =
∫

d3x′w(r) |x⃗′⟩ , (5)

where r = |x⃗− x⃗′|. Determine w(r). The result should look like Fig. 1.

Correlation function (2 points) Consider the correlation of two states separated in the
spatial direction:

D(x⃗− y⃗) = ⟨0|ϕ(t = 0, y⃗)ϕ(t = 0, x⃗) |0⟩ . (6)

a) Show that

D(x⃗− y⃗) = D(y⃗ − x⃗). (7)

b) Calculate D(x⃗− y⃗) and express the result as a function of r = |x⃗− y⃗|.

[Optional] Causality In a quantum theory, information about a state cannot be obtained
without some explicit measurement. We introduce an operator P(t, x⃗) = [ϕ(t, x⃗)]2 and call it a
“probe”, since it enables us to probe a state. Successive probes are expressed as

P(t2, x⃗2)U(t2 − t1)P(t1, x⃗1)U(t1 − t0) |Ψ(t0)⟩ , (8)

where |Ψ(t0)⟩ is the initial state at t = t0 (it is a multi-particle state in general) and U(t) is the
time evolution operator.
Let us consider the case of two simultaneous probes at different points. This can be expressed
as

P(t, x⃗)P(t, y⃗)U(t− t0) |Ψ(t0)⟩ , (9)

where x⃗ ̸= y⃗. Since the probes act on the different points, we could also consider

P(t, y⃗)P(t, x⃗)U(t− t0) |Ψ(t0)⟩ . (10)

If Eq. (9) and Eq. (10) yield different results, it means that the measurement at y⃗ affects the
measurement at x⃗ no matter how far they are separated. This is a breakdown of causality.
Derive the sufficient condition for

P(t, x⃗)P(t, y⃗)U(t− t0) |Ψ(t0)⟩ = P(t, y⃗)P(t, x⃗)U(t− t0) |Ψ(t0)⟩ (11)

and show that it is indeed satisfied.

[Optional] Feynman propagator In this subsection, we define the Feynman propagator as
(see lecture)

DF (x− y) = ⟨0|T [ϕ(x)ϕ(y)] |0⟩ (12)

and show the equivalence with the definition via the method of Green’s functions. The time
ordering operator T acts as

T [ϕ(x)ϕ(y)] = θ(x0 − y0)ϕ(x)ϕ(y) + θ(y0 − x0)ϕ(y)ϕ(x) (13)

where θ(t) is the step function.
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a) The step function can be expressed as

θ(t) = −
∫ ∞

−∞

dξ

2πi

e−iξt

ξ + i0+
(14)

where 0+ is an infinitesimal positive number. Confirm that this expression indeed works.

b) Use the representation (14) and determine the integrand I of the following equation.

θ(x0 − y0) ⟨0|ϕ(x)ϕ(y) |0⟩ =
∫

d4k

(2π)4
e−ik(x−y)I . (15)

I should not contain an integral.

c) Calculate θ(y0−x0) ⟨0|ϕ(y)ϕ(x) |0⟩ in analogy to (b), and obtain the Feynman propagator
by substituting the results into Eq. (12). The result should agree with the one obtained
by the method of the Green’s function (see lecture):

DF (x− y) =

∫
d4k

(2π)4
i

k2 −m2 + i0+
e−ik(x−y) . (16)

Make sure that the sign of i0+ is correct.

Exercise 2: Quantised Dirac field (5 points)
We have a quantised Dirac field given by

ψ(x) =

∫
d3k

(2π)3 2k0

∑
s=±

[
eik·xvs(k⃗)b

†
s(k⃗) + e−ik·xus(k⃗)as(k⃗)

]
, k0 =

√
k⃗2 +m2 .

a) Derive from the anti-commutation relations of the fields{
ψα(x), ψ

†
β(y)

}
x0=y0

= δαβ δ
(3)(x⃗− y⃗) ,{

ψα(x), ψβ(y)
}
x0=y0

=
{
ψ†
α(x), ψ

†
β(y)

}
x0=y0

= 0 ,

the anti-commutation relation for the creation and annihilation operators{
as(k⃗), a

†
s′(k⃗

′)
}
=

{
bs(k⃗), b

†
s′(k⃗

′)
}
= 2k0 δss′ (2π)

3 δ(3)(k⃗ − k⃗′) ,{
as(k⃗), as′(k⃗

′)
}
=

{
bs(k⃗), bs′(k⃗

′)
}
=

{
a†s(k⃗), a

†
s′(k⃗

′)
}
=

{
b†s(k⃗), b

†
s′(k⃗

′)
}
= 0 ,{

as(k⃗), bs′(k⃗
′)
}
=

{
as(k⃗), b

†
s′(k⃗

′)
}
=

{
a†s(k⃗), bs′(k⃗

′)
}
=

{
a†s(k⃗), b

†
s′(k⃗

′)
}
= 0 .

Hint: u†s(k⃗)us′(k⃗) = v†s(k⃗)vs′(k⃗) = 2k0 δss′ , u
†
s(k⃗)vs′(−k⃗) = v†s(k⃗)us′(−k⃗) = 0.

b) Show that the momentum operator of the free Dirac fields, Pµ =
∫
d3xψ† i∂µψ, can be

written in normal ordering as

:Pµ: =

∫
d3k

(2π)3 2k0
kµ

∑
s=±

[
a†s(k⃗)as(k⃗) + b†s(k⃗)bs(k⃗)

]
Hint: :asa

†
s: = −a†sas etc. for the Dirac fields.

Calculate the commutators [Pµ, ψ(x)] and [Pµ, ψ̄(x)].

c) Determine the charge Q (in normal ordering) of the conserved current jµ = ψ̄γµψ (see
exercise 1 on sheet 4).
Calculate the commutators [Q,ψ(x)], [Q, ψ̄(x)] and [Q,Pµ].

d) What happens if the fermion field is quantised using a commutator relation?
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