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1 Introductory remarks

In this course we will talk about quantum field theory. Quantum field theory

is the result of a merger of quantum mechanics and special relativity. We will

first review basic facts about both theories and then we will try to understand

why it is challenging to combine them.

In quantum mechanics we use the Schrödinger equation to describe the

time evolution of a quantum state |Ψ⟩

iℏ
∂

∂t
|Ψ⟩ = H|Ψ⟩. (1.1)

The operator H is the Hamilton operator (the Hamiltonian); it is an operator

of the total energy of the system. Consider the simplest quantum mechanical

system – a spinless, non-relativistic particle with no forces acting on it. The

Hamiltonian is

H =
p⃗2

2m
, (1.2)

where p⃗ = −iℏ∇⃗ is the momentum operator and m is the particle’s mass.
The Schrödinger equation becomes

iℏ
∂

∂t
|Ψ(x, t)⟩ = −

∇⃗2

2m
Ψ(x, t). (1.3)

Here

Ψ(x, t) = ⟨x |Ψ⟩, (1.4)

is the position-state wave function. This quantity completely characterizes the

system and allows us to answer any questions, permissible in Quantum Me-

chanics, about it. In particular, according to Quantum Mechanics, |Ψ(x, t)|2
gives a probability to find the function at the point x and the time t. Since

the probabilities to find a particle somewhere at any time is one, we have∫
d3x |Ψ(x, t)|2 = 1. (1.5)

Since the Hamiltonian in Eq. (1.3) is the non-relativistic kinetic energy of

the particle, we can make a natural step towards combining quantum mecha-

nics with special relativity by promoting the Hamiltonian in Eq. (1.2) to the

operator of relativistic energy

Hrel =
√
m2c4 + p⃗2c2. (1.6)
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It is clear that a Schrödinger equation with H = Hrel describes free particles

with correct relativistic energies

Ep⃗ =
√
m2c4 + p⃗2c2. (1.7)

However, such Schrödinger equation

iℏ
∂Ψ(x, t)

∂t
Ψ(x, t) =

√
m2c4 − ℏ2c2∇⃗2Ψ(x, t) + V (x⃗)Ψ(x, t), (1.8)

is not quite satisfactory. Indeed, this equation treats time and space very

differently and this is not what should be expected from an acceptable relati-

vistic equation. Second, this equation has infinitely many derivatives because

it involves a square root of a differential operator. Infinitely many derivatives

acting on the function Ψ(t, x) can be interpreted as a function evaluated at

a shifted argument Ψ(t, x +λ) so that the above equation would relate wave

functions evaluated at two different spatial points but the same times. All the

fundamental equations known in physics (Newton’s second law, Maxwell’s

equations, Schrödinger equation) do not have this property and we should try

to avoid it also in this case.

There is an interesting way to overcome both of these problems. It amounts

to considering the equation for the Hamiltonian squared, rather then the Ha-

miltonian itself. We then find

(iℏ)2
∂2

∂t2
Ψ(x, t) =

[√
m2c4 − ℏ2c2∇⃗2

]2
Ψ(t, x), (1.9)

which can be written as[
ℏ2
∂2

∂t2
− ℏ2c2∇⃗2 +m2c4

]
Ψ(t, x) = 0. (1.10)

This equation is known as the Klein-Gordon equation; it will appear several

times in the course of these lectures.

The Klein-Gordon equation is consistent with relativity. Let us understand

what is meant by this statement. Main postulates of special relativity imp-

ly that laws of physics are the same in all inertial frames and that relations

between coordinates and times in various frames are given by Lorentz trans-

formations. “Physics” in our case follows from Eq. (1.10) so we would expect

that the equation itself and its solutions in different reference frames should,
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basically, be the same. We will show this shortly but first we remind ourselves

about special relativity.

In special relativity we combine time and space into a space-time and work

with four-vectors. The basic four-vector is xµ = (ct, x⃗), µ = 0, 1, 2, 3. It is

called a covariant vector, a vector with an upper index. There also exists a

vector with a lower index xµ = (ct,−x⃗), a contravariant vector. The relation
between a vector with an upper index and a vector with a lower index is

provided by the metric tensor gµν. It is defined as follows.

gµν = diag (1,−1,−1,−1) . (1.11)

We then start with xµ and compute

xµ = gµνx
ν = (ct,−x⃗), (1.12)

as announced earlier.

For the purpose of this lecture, Lorentz transformations are described by a

matrix Λµν. A Lorentz transformation transforms all four-vectors in the same

way. For example a vector xµ becomes

xµ1 = Λ
µ
ν x
ν. (1.13)

Admissible matrices Λµν have the following property

Λµν Λ
ρ
µ = g

ρ
ν . (1.14)

The consequence of this equation is that scalar products of four-vectors do

not change when Lorentz transformation is performed. Indeed, if

yµ1 = Λ
µ
νy
ν, (1.15)

then

x1,µy
1,µ = xµy

µ. (1.16)

We are now in position to discuss the Klein-Gordon equation. First, we

write the Klein-Gordon equation in the following way[
∂µ∂µ +

m2c2

ℏ2

]
Ψ(t, x) = 0, (1.17)
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where

∂µ =
∂

∂xµ
=

(
1

c

∂

∂t
,
∂

∂x i

)
, (1.18)

and

∂µ =
∂

∂xµ
=

(
1

c

∂

∂t
,−

∂

∂x i

)
. (1.19)

We will now show that the transformation rules for these differential operators

correspond to the transformation rules of covariant and contravariant vectors.

This means that if a Lorentz transformation

yµ = Λµνx
ν (1.20)

is performed, then

∂µy = Λ
µ
α ∂

α
x , ∂µ,y = Λ

α
µ ∂α,x . (1.21)

To show this, note that we can invert Eq. (1.20) using Eq. (1.14). We find

xρ = Λ ρ
µ yµ. (1.22)

Then,

∂y,µ =
∂xρ

∂yµ
∂x,ρ = Λ

ρ
µ ∂x,ρ, (1.23)

as promised.

It follows that

∂µy ∂µ,y = Λ
µ
αΛ

β
µ ∂

α
x ∂β,x = g

β
α ∂

α
x ∂β,x = ∂

µ
x ∂µ,x . (1.24)

Hence, if Ψ(x) is the solution of the Klein-Gordon equation, then Ψ̄(y) =

Ψ(Λ−1y) = Ψ(x) is the solution of the Klein-Gordon equation in the Lorentz-

transformed frame (
∂µy ∂µ,y +

m2c2

ℏ2

)
Ψ̄(y) = 0. (1.25)

In Quantum Mechanics, solutions of the Schrödinger equation – the wave

functions – are interpreted as probability amplitudes. The reason this can be

done is the continuity equation

∂ρ

∂t
+ ∇⃗ · j⃗ = 0, (1.26)
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where

ρ = |Ψ(x, t)|2, j⃗ = −
iℏ
2m

(
Ψ∗∇⃗Ψ− (∇⃗Ψ)∗Ψ

)
. (1.27)

Thanks to the continuity equation, the following integral∫
d3x⃗ |Ψ(x, t)|2 (1.28)

is time-independent and, therefore, can be interpreted as a total probability

to find a quantum particle at some point in space.

A continuity equation also exists for the Klein-Gordon equation but in that

case

ρ =
iℏ
2mc

[
Ψ∗

∂

∂t
Ψ−

∂Ψ∗

∂t
Ψ

]
. (1.29)

This quantity cannot serve as a suitable definition of the probability density

because it is not sign-definite. Hence, the interpretation of the solution of

Klein-Gordon equation as a single-particle quantum mechanical wave function

becomes problematic. Although this may sound dramatic, it is actually to be

expected since relativity implies that, given sufficient energy, new particles can

be produced. Hence, even if we stay at low energies, quantum fluctuations will

require us to account for multi-particle (intermediate) states meaning that

traditional single-particle interpretation of wave functions and Hilbert spaces

will have to be abandoned.

In Quantum Mechanics, the probability conservation follows from the fact

that the time evolution of a wave function is determined by the Schrödinger

equation Eq. (1.1) where H is a hermitian operator. Klein-Gordon equation is

different because it is not linear in ∂/∂t. Hence, Dirac decided to “linearize”

the Klein-Gordon equation making it linear in time. We have seen one version

of it in Eq. (1.8) and we have said that that equation is not what we want.

Dirac’s idea was to linearize the Klein-Gordon equation both in ∂t and ∂x⃗
treating them on equal footing in the spirit of relativity. Following Dirac, we

write

iℏ
∂

∂t
Ψα = HαβΨβ, (1.30)

where we introduced additional indices whose meaning will become clear later.

Acting on both sides of this equation with iℏ∂t , and using the above equation
one more time, we find[

ℏ2
∂2

∂t2
Ψα +HαβHβγΨγ

]
= 0. (1.31)
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We would like this equation to be identical to the Klein-Gordon equation.

Hence, we require

HαβHβγ = δαγ
[
−ℏ2c2∇⃗2 +m2c4

]
. (1.32)

To solve this equation for Hαβ, we make an ansatz

Hρσ = c [p⃗ · α⃗ρσ +mcβρσ] , (1.33)

where p⃗ = −iℏ∇⃗ is the momentum operator and α⃗ and β are four matrices.
It follows that we can solve Eq. (1.32) provided that the four matrices satisfy

the following equations

αiαj + αjαi = δi j , β2 = 1, αiβ + βαi = 0. (1.34)

One can show that these equations can be satisfied with four-by-four ma-

trices1 which means that we can consistently “linearize” Klein-Gordon equa-

tion if, for a particle, we introduce a wave function with four indices, i.e. four

degrees of freedom. For an electron, one can associate two of these degrees

of freedom with the electron’s spin; interpretation of the other two requires

us to introduce the concept of “anti-particles”.

One of the big problems with Klein-Gordon equation is the existence of

negative energy solutions

E(p⃗) = −
√
c2p⃗2 +m2c4, (1.35)

which implies that the particles’ energies are not bounded from below. It

is easy to see that this problem is not solved by the Dirac equation. The

simplest way to see this is to notice that trace of the Dirac Hamiltonian

vanishes2 which implies that the sum of its four eigenvalues should vanish.

This, in turn, means that there are four eigenvalues

{
√
c2p⃗2 +m2c4,

√
c2p⃗2 +m2c4,−

√
c2p⃗2 +m2c4,−

√
c2p⃗2 +m2c4},

(1.36)

so that also energy spectra of Dirac particles are not bounded from below.

Dirac proposed to solve this problem by filling all the negative energy

states with electrons. Since electrons are fermions, if a particular energy level

1Four is the minimal rank of these matrices.
2Proof: e.g. Tr[β] = Tr[α21β] = Tr[α1βα1] = −Tr[β].
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is filled, it is not possible to add more electrons to that level. If an electron

from a Dirac vacuum is excited into a positive energy state, it leaves a “hole”

behind. This hole behaves like a copy of an electron but with a positive electric

charge. We call such a “copy” a positron. Thus, if electron is excited out the

Dirac vacuum, it appears that an electron-positron pair is created.

This feature of the Dirac’s solution of the negative energy problem – i.e.

solving it by employing a mechanism of particle creation – emphasizes once

again that it is difficult to keep interpreting Ψ(t, x) as a single-particle wave

function, something that we always do in Quantum Mechanics. It appears,

therefore, that if we want to combine Quantum Mechanics and relativity

consistently, single-particle interpretation of the wave function will have to be

abandoned.

Another, perhaps more technical, problem stems from the fact that in

Quantum Mechanics time t and space coordinate x⃗ are treated differently

since t is a parameter and x⃗ is an operator. If we want to combine Quantum

Mechanics with relativity, we should put t and x⃗ on equal footing. We do this

by declaring that both of these variables are parameters. They are combined

into a four-vector xµ. The quantity Ψ(x) is not a wave-function but a field

operator defined at a space-time point xµ. This field operator should allow us

to describe multi-particle states in the Hilbert space of a problem.

Again, we can get a hint from Quantum Mechanics on how to describe

multi-particle states. Consider N identical particles moving in an external

potential U(x) and interacting with each other via a potential V (xi −xj). The
Schrödinger equation for this system reads

iℏ
∂

∂t
ψ(t, x1, x2, .., xN)

=

[
N∑
j=1

(
−
ℏ2

2m
∇⃗2j + U(xj)

)
+
∑
jk

V (xj − xk)

]
ψ(t, x1, .., xN).

(1.37)

We can arrange the description of this quantum system in a somewhat

different way by introducing creation and annihilation operators that create

and annihilate particles at a point x . These operators satisfy the following

commutation relations

[a(x), a(x)] = [a+(x), a+(x)] = 0, [a(x⃗), a+(y⃗)] = δ(3)(x⃗ − y⃗). (1.38)
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We now write the Hamiltonian and the quantum state as follows

H =

∫
d3x⃗ a+(x)

(
−
ℏ2

2m
∇⃗2j + U(x)

)
a(x)

+
1

2

∫
d3x⃗ d3y⃗ a+(x⃗)a+(y⃗)V (x⃗ − y⃗)a(x⃗)a(y⃗),

(1.39)

|Ψ⟩ =
1√
N!

∫
dx⃗1...dx⃗N ψ(t, x1, x2, x3, ..xN)a

+(x1)...a
+(xN)|0⟩. (1.40)

One can show that if the wave function ψ(t, x1, ..., xN) satisfies the Schrödinger

equation Eq. (1.37), then

H|Ψ⟩ = iℏ
∂

∂t
|Ψ⟩. (1.41)

The number of particles is conserved in Quantum Mechanics. Mathema-

tically, this follows from the fact that the particle number operator

N̂ =

∫
d3xa+(x)a(x) (1.42)

commutes with the Hamiltonian H (which is to say that H contains equal

number of creation and annihilation operators). To incorporate particle crea-

tion and annihilation, we need to add terms to Hamilton operators with the

property that the number of creation operators differs from the number of an-

nihilation operators. Also, we know that this formalism can be easily extended

to describe fermions; all we need to do is to declare that the corresponding

creating and annihilation operators anti-commute. This will automatically

create wave functions with proper symmetry properties.

Hence, we should take the following lessons from the discussion in this

lecture: combining quantum mechanics with relativity is complicated. We ha-

ve to give up on a probabilistic single-particle interpretation of wave func-

tions and treat them as fields which depend on a particular point in space

time xµ = (t, x⃗). The phenomenon of particle creation and annihilation can

be described with creation and annihilation operators that are familiar from

Quantum Mechanics. All we need to do now is to combine these observations

into a single framework.
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